File size: 9,445 Bytes
dcf8a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import json
import logging
import re
import requests
import hashlib
from urllib.parse import urlparse, urljoin
from typing import List, Dict, Optional, Tuple
from concurrent.futures import ThreadPoolExecutor, as_completed
from bs4 import BeautifulSoup
import PyPDF2
from io import BytesIO
from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sentence_transformers import SentenceTransformer
import spacy
import gradio as gr

# Configuración avanzada
logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

class AdvancedSEOAanalyzer:
    def __init__(self, sitemap_url: str):
        self.sitemap_url = sitemap_url
        self.session = self._configure_session()
        self.models = self._load_models()
        self.processed_urls = set()
        self.link_graph = defaultdict(list)
        self.content_store = {}
        self.documents = []

    def _configure_session(self) -> requests.Session:
        session = requests.Session()
        retry = Retry(
            total=5,
            backoff_factor=1,
            status_forcelist=[500, 502, 503, 504]
        )
        adapter = HTTPAdapter(max_retries=retry)
        session.mount('https://', adapter)
        session.headers.update({
            'User-Agent': 'Mozilla/5.0 (compatible; SEOBot/1.0; +https://seo.example.com/bot)'
        })
        return session

    def _load_models(self) -> Dict:
        return {
            'summarization': pipeline("summarization", 
                                    model="facebook/bart-large-cnn",
                                    device=0 if torch.cuda.is_available() else -1),
            'qa': pipeline("question-answering",
                         model="deepset/roberta-base-squad2",
                         tokenizer="deepset/roberta-base-squad2"),
            'ner': pipeline("ner", 
                          model="dslim/bert-base-NER",
                          aggregation_strategy="simple"),
            'semantic': SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2'),
            'spacy': spacy.load("en_core_web_lg")
        }

    async def download_content(self, url: str) -> Optional[Dict]:
        if url in self.processed_urls:
            return None
        
        try:
            response = self.session.get(url, timeout=15)
            response.raise_for_status()
            content_type = response.headers.get('Content-Type', '')

            if 'application/pdf' in content_type:
                return self._process_pdf(url, response.content)
            elif 'text/html' in content_type:
                return await self._process_html(url, response.text)
            else:
                logger.warning(f"Unsupported content type: {content_type}")
                return None

        except Exception as e:
            logger.error(f"Error downloading {url}: {str(e)}")
            return None

    def _process_pdf(self, url: str, content: bytes) -> Dict:
        text = ""
        with BytesIO(content) as pdf_file:
            reader = PyPDF2.PdfReader(pdf_file)
            for page in reader.pages:
                text += page.extract_text()

        doc_hash = hashlib.sha256(content).hexdigest()
        self._save_document(url, content, 'pdf')

        return {
            'url': url,
            'type': 'pdf',
            'content': text,
            'hash': doc_hash,
            'links': []
        }

    async def _process_html(self, url: str, html: str) -> Dict:
        soup = BeautifulSoup(html, 'lxml')
        main_content = self._extract_main_content(soup)
        links = self._extract_links(url, soup)
        
        self._save_document(url, html.encode('utf-8'), 'html')
        
        return {
            'url': url,
            'type': 'html',
            'content': main_content,
            'hash': hashlib.sha256(html.encode()).hexdigest(),
            'links': links,
            'metadata': self._extract_metadata(soup)
        }

    def _extract_links(self, base_url: str, soup: BeautifulSoup) -> List[Dict]:
        links = []
        base_domain = urlparse(base_url).netloc
        
        for tag in soup.find_all(['a', 'link'], href=True):
            href = tag['href']
            full_url = urljoin(base_url, href)
            parsed = urlparse(full_url)
            
            link_type = 'internal' if parsed.netloc == base_domain else 'external'
            file_type = 'other'
            
            if parsed.path.lower().endswith(('.pdf', '.doc', '.docx')):
                file_type = 'document'
            elif parsed.path.lower().endswith(('.jpg', '.png', '.gif')):
                file_type = 'image'
                
            links.append({
                'url': full_url,
                'type': link_type,
                'file_type': file_type,
                'anchor': tag.text.strip()
            })
            
        return links

    def _extract_metadata(self, soup: BeautifulSoup) -> Dict:
        metadata = {
            'title': soup.title.string if soup.title else '',
            'description': '',
            'keywords': [],
            'open_graph': {}
        }
        
        meta_tags = soup.find_all('meta')
        for tag in meta_tags:
            name = tag.get('name', '').lower()
            property = tag.get('property', '').lower()
            content = tag.get('content', '')
            
            if name == 'description':
                metadata['description'] = content
            elif name == 'keywords':
                metadata['keywords'] = [kw.strip() for kw in content.split(',')]
            elif property.startswith('og:'):
                key = property[3:]
                metadata['open_graph'][key] = content
                
        return metadata

    def analyze_content(self, content: Dict) -> Dict:
        analysis = {
            'summary': self.models['summarization'](content['content'], 
                                                    max_length=150,
                                                    min_length=30)[0]['summary_text'],
            'entities': self.models['ner'](content['content']),
            'semantic_embedding': self.models['semantic'].encode(content['content']),
            'seo_analysis': self._perform_seo_analysis(content)
        }
        
        if content['type'] == 'pdf':
            analysis['document_analysis'] = self._analyze_document_structure(content)
            
        return analysis

    def _perform_seo_analysis(self, content: Dict) -> Dict:
        text = content['content']
        doc = self.models['spacy'](text)
        
        return {
            'readability_score': self._calculate_readability(text),
            'keyword_density': self._calculate_keyword_density(text),
            'heading_structure': self._analyze_headings(doc),
            'content_length': len(text.split()),
            'semantic_topics': self._extract_semantic_topics(text)
        }

    def _extract_semantic_topics(self, text: str) -> List[str]:
        vectorizer = TfidfVectorizer(stop_words='english', ngram_range=(1,2))
        tfidf = vectorizer.fit_transform([text])
        feature_array = np.array(vectorizer.get_feature_names_out())
        tfidf_sorting = np.argsort(tfidf.toarray()).flatten()[::-1]
        
        return feature_array[tfidf_sorting][:5].tolist()

    def run_analysis(self, max_workers: int = 4) -> Dict:
        sitemap_urls = self._parse_sitemap()
        results = []
        
        with ThreadPoolExecutor(max_workers=max_workers) as executor:
            futures = [executor.submit(self.download_content, url) 
                      for url in sitemap_urls]
            
            for future in as_completed(futures):
                result = future.result()
                if result:
                    analyzed = self.analyze_content(result)
                    results.append({**result, **analyzed})
                    self._update_link_graph(result)
        
        self._save_full_analysis(results)
        return {
            'total_pages': len(results),
            'document_types': self._count_document_types(results),
            'link_analysis': self._analyze_link_graph(),
            'content_analysis': self._aggregate_content_stats(results)
        }

    def _save_document(self, url: str, content: bytes, file_type: str) -> None:
        parsed = urlparse(url)
        path = parsed.path.lstrip('/')
        filename = f"documents/{parsed.netloc}/{path}" if path else f"documents/{parsed.netloc}/index"
        
        os.makedirs(os.path.dirname(filename), exist_ok=True)
        with open(filename + f'.{file_type}', 'wb') as f:
            f.write(content)

    def launch_interface(self):
        interface = gr.Interface(
            fn=self.run_analysis,
            inputs=gr.Textbox(label="Sitemap URL"),
            outputs=[
                gr.JSON(label="Analysis Results"),
                gr.File(label="Download Data")
            ],
            title="Advanced SEO Analyzer",
            description="Analyze websites with AI-powered SEO insights"
        )
        interface.launch()

if __name__ == "__main__":
    analyzer = AdvancedSEOAanalyzer("https://www.example.com/sitemap.xml")
    analyzer.launch_interface()