medtty
Updates
c055ffe
import gradio as gr
import tensorflow as tf
import numpy as np
import json
from PIL import Image
from fastapi import FastAPI, UploadFile, File, WebSocket, Request, Response
import uvicorn
import cv2
import mediapipe as mp
import io
import time
from typing import Dict
# Initialize MediaPipe Hands
mp_hands = mp.solutions.hands
# For static images, we use static_image_mode=True
hands_static = mp_hands.Hands(static_image_mode=True, max_num_hands=1, min_detection_confidence=0.5)
# For video streams, we use static_image_mode=False for better performance
hands_video = mp_hands.Hands(static_image_mode=False, max_num_hands=1, min_detection_confidence=0.5, min_tracking_confidence=0.5)
mp_drawing = mp.solutions.drawing_utils
# Create both Gradio and FastAPI apps
gradio_app = gr.Blocks()
# Load model and class indices
interpreter = tf.lite.Interpreter(model_path="model/model.tflite")
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
with open('model/class_indices.json') as f:
class_indices = json.load(f)
index_to_class = {int(k): v for k, v in class_indices.items()}
# Model and processing parameters
MODEL_INPUT_SIZE = (224, 224)
DETECTION_FREQUENCY = 5 # Process every Nth frame for performance
CONFIDENCE_THRESHOLD = 0.5 # Minimum confidence to report a gesture
# Cache to store most recent detection results
detection_cache = {}
# Preprocess function now expects a PIL Image (already cropped)
def preprocess_image(image):
# Ensure image is RGB before resizing and converting
if image.mode != 'RGB':
image = image.convert('RGB')
image = image.resize(MODEL_INPUT_SIZE)
image_array = np.array(image) / 255.0
return np.expand_dims(image_array, axis=0).astype(np.float32)
def detect_and_crop_hand(image_rgb):
"""Detect hand in the image and return cropped hand region if found"""
h, w = image_rgb.shape[:2]
results = hands_static.process(image_rgb)
if not results.multi_hand_landmarks:
return None, "No hand detected"
# Get the first hand detected
hand_landmarks = results.multi_hand_landmarks[0]
# Calculate bounding box from landmarks
x_min, y_min = w, h
x_max, y_max = 0, 0
for landmark in hand_landmarks.landmark:
x, y = int(landmark.x * w), int(landmark.y * h)
if x < x_min: x_min = x
if y < y_min: y_min = y
if x > x_max: x_max = x
if y > y_max: y_max = y
# Add padding to the bounding box
padding = 30
x_min = max(0, x_min - padding)
y_min = max(0, y_min - padding)
x_max = min(w, x_max + padding)
y_max = min(h, y_max + padding)
# Check for valid dimensions
if x_min >= x_max or y_min >= y_max:
return None, "Invalid bounding box"
# Crop the hand region
cropped_image = image_rgb[y_min:y_max, x_min:x_max]
if cropped_image.size == 0:
return None, "Empty cropped image"
return cropped_image, None
def process_frame_for_gesture(frame):
"""Process a single frame for hand gesture recognition"""
try:
# Convert to RGB for MediaPipe
if frame.shape[2] == 4: # RGBA
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
elif frame.shape[2] == 3 and frame.dtype == np.uint8:
# Assuming BGR from OpenCV
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Detect and crop hand
cropped_hand, error = detect_and_crop_hand(frame)
if error:
return {"error": error}
# Convert cropped NumPy array to PIL Image
cropped_pil = Image.fromarray(cropped_hand)
# Preprocess and predict
processed_image = preprocess_image(cropped_pil)
interpreter.set_tensor(input_details[0]['index'], processed_image)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
prediction = output_data[0]
# Get the prediction result
predicted_class_idx = int(np.argmax(prediction))
confidence = float(prediction[predicted_class_idx])
predicted_class = index_to_class.get(predicted_class_idx, f"unknown_{predicted_class_idx}")
# Return prediction info
return {
"class": predicted_class,
"confidence": confidence,
"timestamp": time.time(),
"all_predictions": {
index_to_class.get(i, f"class_{i}"): float(prediction[i])
for i in range(len(prediction))
}
}
except Exception as e:
import traceback
traceback.print_exc()
return {"error": str(e)}
def predict(image_pil):
"""Original prediction function for Gradio interface"""
try:
# Convert PIL image to OpenCV format
image_cv = np.array(image_pil)
# Process the image with MediaPipe Hands
image_rgb = cv2.cvtColor(image_cv, cv2.COLOR_RGB2BGR)
image_rgb = cv2.cvtColor(image_rgb, cv2.COLOR_BGR2RGB)
# Detect hand and get cropped image
cropped_hand, error = detect_and_crop_hand(image_rgb)
if error:
return {"error": error}
# Convert cropped NumPy array to PIL Image
cropped_pil = Image.fromarray(cropped_hand)
# Preprocess and predict
processed_image = preprocess_image(cropped_pil)
interpreter.set_tensor(input_details[0]['index'], processed_image)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
prediction = output_data[0]
# Get the prediction result
predicted_class_idx = int(np.argmax(prediction))
confidence = float(prediction[predicted_class_idx])
predicted_class = index_to_class.get(predicted_class_idx, f"unknown_{predicted_class_idx}")
return {
"class": predicted_class,
"confidence": confidence,
"all_predictions": {
index_to_class.get(i, f"class_{i}"): float(prediction[i])
for i in range(len(prediction))
}
}
except Exception as e:
import traceback
traceback.print_exc()
return {"error": str(e)}
# Define the Gradio interface - simplified without webcam
with gradio_app:
gr.Markdown("# Hand Gesture Recognition")
with gr.Row():
input_image = gr.Image(type="pil", label="Upload Image")
output_json = gr.JSON(label="Prediction Results")
submit = gr.Button("Predict")
submit.click(
fn=predict,
inputs=input_image,
outputs=output_json
)
gr.Examples(
examples=[["examples/two_up.jpg"], ["examples/call.jpg"], ["examples/stop.jpg"]],
inputs=input_image
)
# Add information about API endpoints for Android integration
gr.Markdown("""
## API Endpoints for Android Integration
- **Image Upload**: `POST /api/predict` with image file
- **Video Frame**: `POST /api/video/frame` with frame data and X-Stream-ID header
- **WebSocket Stream**: Connect to `/api/stream` for real-time processing
- **Available Gestures**: `GET /api/gestures` returns all gesture classes
- **Health Check**: `GET /health` checks server status
""")
# Mount Gradio app to FastAPI
fastapi_app = FastAPI()
# Load model and class indices
interpreter = tf.lite.Interpreter(model_path="model/model.tflite")
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
with open('model/class_indices.json') as f:
class_indices = json.load(f)
index_to_class = {int(k): v for k, v in class_indices.items()}
# Model and processing parameters
MODEL_INPUT_SIZE = (224, 224)
DETECTION_FREQUENCY = 5 # Process every Nth frame for performance
CONFIDENCE_THRESHOLD = 0.5 # Minimum confidence to report a gesture
# Cache to store most recent detection results
detection_cache = {}
# Preprocess function now expects a PIL Image (already cropped)
def preprocess_image(image):
# Ensure image is RGB before resizing and converting
if image.mode != 'RGB':
image = image.convert('RGB')
image = image.resize(MODEL_INPUT_SIZE)
image_array = np.array(image) / 255.0
return np.expand_dims(image_array, axis=0).astype(np.float32)
def detect_and_crop_hand(image_rgb):
"""Detect hand in the image and return cropped hand region if found"""
h, w = image_rgb.shape[:2]
results = hands_static.process(image_rgb)
if not results.multi_hand_landmarks:
return None, "No hand detected"
# Get the first hand detected
hand_landmarks = results.multi_hand_landmarks[0]
# Calculate bounding box from landmarks
x_min, y_min = w, h
x_max, y_max = 0, 0
for landmark in hand_landmarks.landmark:
x, y = int(landmark.x * w), int(landmark.y * h)
if x < x_min: x_min = x
if y < y_min: y_min = y
if x > x_max: x_max = x
if y > y_max: y_max = y
# Add padding to the bounding box
padding = 30
x_min = max(0, x_min - padding)
y_min = max(0, y_min - padding)
x_max = min(w, x_max + padding)
y_max = min(h, y_max + padding)
# Check for valid dimensions
if x_min >= x_max or y_min >= y_max:
return None, "Invalid bounding box"
# Crop the hand region
cropped_image = image_rgb[y_min:y_max, x_min:x_max]
if cropped_image.size == 0:
return None, "Empty cropped image"
return cropped_image, None
def process_frame_for_gesture(frame):
"""Process a single frame for hand gesture recognition"""
try:
# Convert to RGB for MediaPipe
if frame.shape[2] == 4: # RGBA
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
elif frame.shape[2] == 3 and frame.dtype == np.uint8:
# Assuming BGR from OpenCV
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Detect and crop hand
cropped_hand, error = detect_and_crop_hand(frame)
if error:
return {"error": error}
# Convert cropped NumPy array to PIL Image
cropped_pil = Image.fromarray(cropped_hand)
# Preprocess and predict
processed_image = preprocess_image(cropped_pil)
interpreter.set_tensor(input_details[0]['index'], processed_image)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
prediction = output_data[0]
# Get the prediction result
predicted_class_idx = int(np.argmax(prediction))
confidence = float(prediction[predicted_class_idx])
predicted_class = index_to_class.get(predicted_class_idx, f"unknown_{predicted_class_idx}")
# Return prediction info
return {
"class": predicted_class,
"confidence": confidence,
"timestamp": time.time(),
"all_predictions": {
index_to_class.get(i, f"class_{i}"): float(prediction[i])
for i in range(len(prediction))
}
}
except Exception as e:
import traceback
traceback.print_exc()
return {"error": str(e)}
# --- Define ALL FastAPI Endpoints BEFORE Mounting Gradio ---
@fastapi_app.post("/api/predict")
async def api_predict(file: UploadFile = File(...)):
try:
# Read image bytes
contents = await file.read()
# Decode image using OpenCV
nparr = np.frombuffer(contents, np.uint8)
img_cv = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if img_cv is None:
return {"error": "Could not decode image"}
# Convert BGR (OpenCV default) to RGB for PIL
img_rgb = cv2.cvtColor(img_cv, cv2.COLOR_BGR2RGB)
image_pil = Image.fromarray(img_rgb)
# Use the existing predict function (which handles cropping and prediction)
return predict(image_pil) # Assuming predict is defined above
except Exception as e:
import traceback
traceback.print_exc()
return {"error": f"Failed to process image: {e}"}
@fastapi_app.websocket("/api/stream")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
try:
# Get stream configuration
config_data = await websocket.receive_text()
config = json.loads(config_data)
stream_id = config.get("stream_id", f"stream_{int(time.time())}")
frame_count = 0
last_detection_time = time.time()
processing_interval = 1.0 / DETECTION_FREQUENCY # Process every N frames
while True:
# Receive frame data
data = await websocket.receive_bytes()
# Decode the image
nparr = np.frombuffer(data, np.uint8)
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if frame is None:
await websocket.send_json({"error": "Invalid frame data"})
continue
frame_count += 1
current_time = time.time()
# Process every N frames for performance
if frame_count % DETECTION_FREQUENCY == 0 or (current_time - last_detection_time) >= processing_interval:
# Process the frame for gesture recognition
result = process_frame_for_gesture(frame) # Assuming process_frame_for_gesture is defined above
if "error" not in result:
# Cache the result
detection_cache[stream_id] = result
last_detection_time = current_time
# Send results back to client
await websocket.send_json(result)
except Exception as e:
import traceback
traceback.print_exc()
print(f"WebSocket error: {e}")
finally:
print(f"WebSocket connection closed")
@fastapi_app.post("/api/video/frame")
async def process_video_frame(request: Request):
"""Process a single video frame sent from Android app"""
try:
# Get the raw bytes from the request
content = await request.body()
# Get stream ID from header if available
stream_id = request.headers.get("X-Stream-ID", f"stream_{int(time.time())}")
# Decode the image
nparr = np.frombuffer(content, np.uint8)
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if frame is None:
return {"error": "Could not decode image data"}
# Process the frame
result = process_frame_for_gesture(frame) # Assuming process_frame_for_gesture is defined above
if "error" not in result:
# Cache the result for this stream
detection_cache[stream_id] = result
# Return the result
return result
else:
return result
except Exception as e:
import traceback
traceback.print_exc()
return {"error": f"Failed to process frame: {e}"}
@fastapi_app.get("/api/gestures")
def get_available_gestures():
"""Return all available gesture classes the model can recognize"""
return {"gestures": list(index_to_class.values())}
@fastapi_app.get("/health")
def health_check():
"""Simple health check endpoint"""
return {"status": "healthy", "timestamp": time.time()}
# Define the root endpoint AFTER other API endpoints but BEFORE Gradio mount
@fastapi_app.get("/")
async def root():
return {
"app": "Hand Gesture Recognition API",
"usage": {
"image_prediction": "POST /api/predict with image file",
"video_streaming": "WebSocket /api/stream or POST frames to /api/video/frame",
"available_gestures": "GET /api/gestures"
},
"android_integration": {
"single_image": "Send image as multipart/form-data to /api/predict",
"video_stream": "Send individual frames to /api/video/frame with X-Stream-ID header",
"websocket": "Connect to /api/stream for bidirectional communication"
}
}
# --- Now define and mount the Gradio App ---
gradio_app = gr.Blocks()
with gradio_app:
gr.Markdown("# Hand Gesture Recognition")
with gr.Row():
input_image = gr.Image(type="pil", label="Upload Image")
output_json = gr.JSON(label="Prediction Results")
submit = gr.Button("Predict")
submit.click(
fn=predict, # Make sure 'predict' function is defined above
inputs=input_image,
outputs=output_json
)
gr.Examples(
examples=[["examples/two_up.jpg"], ["examples/call.jpg"], ["examples/stop.jpg"]],
inputs=input_image
)
# Add information about API endpoints for Android integration
gr.Markdown("""
## API Endpoints for Android Integration
- **Image Upload**: `POST /api/predict` with image file
- **Video Frame**: `POST /api/video/frame` with frame data and X-Stream-ID header
- **WebSocket Stream**: Connect to `/api/stream` for real-time processing
- **Available Gestures**: `GET /api/gestures` returns all gesture classes
- **Health Check**: `GET /health` checks server status
""")
# Mount Gradio app to FastAPI AFTER defining FastAPI endpoints
app = gr.mount_gradio_app(fastapi_app, gradio_app, path="/")
# --- Uvicorn runner remains the same ---
if __name__ == "__main__":
# Modified for Hugging Face Spaces environment
uvicorn.run(
app, # Use the final 'app' instance returned by mount_gradio_app
host="0.0.0.0",
port=7860,
root_path="",
forwarded_allow_ips="*"
)