Spaces:
Running
Running
File size: 17,897 Bytes
d75b44a 067b419 d75b44a 067b419 c15ccda 528ce19 067b419 528ce19 d75b44a 528ce19 d75b44a 067b419 528ce19 d75b44a 528ce19 067b419 d75b44a 067b419 d75b44a 067b419 528ce19 067b419 528ce19 067b419 528ce19 067b419 d75b44a 067b419 d75b44a 067b419 d75b44a 528ce19 d75b44a 528ce19 d75b44a c15ccda d75b44a c15ccda d75b44a c055ffe d75b44a 528ce19 c055ffe 528ce19 067b419 c055ffe 067b419 c055ffe 067b419 c055ffe 067b419 c055ffe 067b419 c055ffe 067b419 c055ffe 067b419 d75b44a c055ffe d75b44a 9e294ff c055ffe 9e294ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
import gradio as gr
import tensorflow as tf
import numpy as np
import json
from PIL import Image
from fastapi import FastAPI, UploadFile, File, WebSocket, Request, Response
import uvicorn
import cv2
import mediapipe as mp
import io
import time
from typing import Dict
# Initialize MediaPipe Hands
mp_hands = mp.solutions.hands
# For static images, we use static_image_mode=True
hands_static = mp_hands.Hands(static_image_mode=True, max_num_hands=1, min_detection_confidence=0.5)
# For video streams, we use static_image_mode=False for better performance
hands_video = mp_hands.Hands(static_image_mode=False, max_num_hands=1, min_detection_confidence=0.5, min_tracking_confidence=0.5)
mp_drawing = mp.solutions.drawing_utils
# Create both Gradio and FastAPI apps
gradio_app = gr.Blocks()
# Load model and class indices
interpreter = tf.lite.Interpreter(model_path="model/model.tflite")
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
with open('model/class_indices.json') as f:
class_indices = json.load(f)
index_to_class = {int(k): v for k, v in class_indices.items()}
# Model and processing parameters
MODEL_INPUT_SIZE = (224, 224)
DETECTION_FREQUENCY = 5 # Process every Nth frame for performance
CONFIDENCE_THRESHOLD = 0.5 # Minimum confidence to report a gesture
# Cache to store most recent detection results
detection_cache = {}
# Preprocess function now expects a PIL Image (already cropped)
def preprocess_image(image):
# Ensure image is RGB before resizing and converting
if image.mode != 'RGB':
image = image.convert('RGB')
image = image.resize(MODEL_INPUT_SIZE)
image_array = np.array(image) / 255.0
return np.expand_dims(image_array, axis=0).astype(np.float32)
def detect_and_crop_hand(image_rgb):
"""Detect hand in the image and return cropped hand region if found"""
h, w = image_rgb.shape[:2]
results = hands_static.process(image_rgb)
if not results.multi_hand_landmarks:
return None, "No hand detected"
# Get the first hand detected
hand_landmarks = results.multi_hand_landmarks[0]
# Calculate bounding box from landmarks
x_min, y_min = w, h
x_max, y_max = 0, 0
for landmark in hand_landmarks.landmark:
x, y = int(landmark.x * w), int(landmark.y * h)
if x < x_min: x_min = x
if y < y_min: y_min = y
if x > x_max: x_max = x
if y > y_max: y_max = y
# Add padding to the bounding box
padding = 30
x_min = max(0, x_min - padding)
y_min = max(0, y_min - padding)
x_max = min(w, x_max + padding)
y_max = min(h, y_max + padding)
# Check for valid dimensions
if x_min >= x_max or y_min >= y_max:
return None, "Invalid bounding box"
# Crop the hand region
cropped_image = image_rgb[y_min:y_max, x_min:x_max]
if cropped_image.size == 0:
return None, "Empty cropped image"
return cropped_image, None
def process_frame_for_gesture(frame):
"""Process a single frame for hand gesture recognition"""
try:
# Convert to RGB for MediaPipe
if frame.shape[2] == 4: # RGBA
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
elif frame.shape[2] == 3 and frame.dtype == np.uint8:
# Assuming BGR from OpenCV
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Detect and crop hand
cropped_hand, error = detect_and_crop_hand(frame)
if error:
return {"error": error}
# Convert cropped NumPy array to PIL Image
cropped_pil = Image.fromarray(cropped_hand)
# Preprocess and predict
processed_image = preprocess_image(cropped_pil)
interpreter.set_tensor(input_details[0]['index'], processed_image)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
prediction = output_data[0]
# Get the prediction result
predicted_class_idx = int(np.argmax(prediction))
confidence = float(prediction[predicted_class_idx])
predicted_class = index_to_class.get(predicted_class_idx, f"unknown_{predicted_class_idx}")
# Return prediction info
return {
"class": predicted_class,
"confidence": confidence,
"timestamp": time.time(),
"all_predictions": {
index_to_class.get(i, f"class_{i}"): float(prediction[i])
for i in range(len(prediction))
}
}
except Exception as e:
import traceback
traceback.print_exc()
return {"error": str(e)}
def predict(image_pil):
"""Original prediction function for Gradio interface"""
try:
# Convert PIL image to OpenCV format
image_cv = np.array(image_pil)
# Process the image with MediaPipe Hands
image_rgb = cv2.cvtColor(image_cv, cv2.COLOR_RGB2BGR)
image_rgb = cv2.cvtColor(image_rgb, cv2.COLOR_BGR2RGB)
# Detect hand and get cropped image
cropped_hand, error = detect_and_crop_hand(image_rgb)
if error:
return {"error": error}
# Convert cropped NumPy array to PIL Image
cropped_pil = Image.fromarray(cropped_hand)
# Preprocess and predict
processed_image = preprocess_image(cropped_pil)
interpreter.set_tensor(input_details[0]['index'], processed_image)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
prediction = output_data[0]
# Get the prediction result
predicted_class_idx = int(np.argmax(prediction))
confidence = float(prediction[predicted_class_idx])
predicted_class = index_to_class.get(predicted_class_idx, f"unknown_{predicted_class_idx}")
return {
"class": predicted_class,
"confidence": confidence,
"all_predictions": {
index_to_class.get(i, f"class_{i}"): float(prediction[i])
for i in range(len(prediction))
}
}
except Exception as e:
import traceback
traceback.print_exc()
return {"error": str(e)}
# Define the Gradio interface - simplified without webcam
with gradio_app:
gr.Markdown("# Hand Gesture Recognition")
with gr.Row():
input_image = gr.Image(type="pil", label="Upload Image")
output_json = gr.JSON(label="Prediction Results")
submit = gr.Button("Predict")
submit.click(
fn=predict,
inputs=input_image,
outputs=output_json
)
gr.Examples(
examples=[["examples/two_up.jpg"], ["examples/call.jpg"], ["examples/stop.jpg"]],
inputs=input_image
)
# Add information about API endpoints for Android integration
gr.Markdown("""
## API Endpoints for Android Integration
- **Image Upload**: `POST /api/predict` with image file
- **Video Frame**: `POST /api/video/frame` with frame data and X-Stream-ID header
- **WebSocket Stream**: Connect to `/api/stream` for real-time processing
- **Available Gestures**: `GET /api/gestures` returns all gesture classes
- **Health Check**: `GET /health` checks server status
""")
# Mount Gradio app to FastAPI
fastapi_app = FastAPI()
# Load model and class indices
interpreter = tf.lite.Interpreter(model_path="model/model.tflite")
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
with open('model/class_indices.json') as f:
class_indices = json.load(f)
index_to_class = {int(k): v for k, v in class_indices.items()}
# Model and processing parameters
MODEL_INPUT_SIZE = (224, 224)
DETECTION_FREQUENCY = 5 # Process every Nth frame for performance
CONFIDENCE_THRESHOLD = 0.5 # Minimum confidence to report a gesture
# Cache to store most recent detection results
detection_cache = {}
# Preprocess function now expects a PIL Image (already cropped)
def preprocess_image(image):
# Ensure image is RGB before resizing and converting
if image.mode != 'RGB':
image = image.convert('RGB')
image = image.resize(MODEL_INPUT_SIZE)
image_array = np.array(image) / 255.0
return np.expand_dims(image_array, axis=0).astype(np.float32)
def detect_and_crop_hand(image_rgb):
"""Detect hand in the image and return cropped hand region if found"""
h, w = image_rgb.shape[:2]
results = hands_static.process(image_rgb)
if not results.multi_hand_landmarks:
return None, "No hand detected"
# Get the first hand detected
hand_landmarks = results.multi_hand_landmarks[0]
# Calculate bounding box from landmarks
x_min, y_min = w, h
x_max, y_max = 0, 0
for landmark in hand_landmarks.landmark:
x, y = int(landmark.x * w), int(landmark.y * h)
if x < x_min: x_min = x
if y < y_min: y_min = y
if x > x_max: x_max = x
if y > y_max: y_max = y
# Add padding to the bounding box
padding = 30
x_min = max(0, x_min - padding)
y_min = max(0, y_min - padding)
x_max = min(w, x_max + padding)
y_max = min(h, y_max + padding)
# Check for valid dimensions
if x_min >= x_max or y_min >= y_max:
return None, "Invalid bounding box"
# Crop the hand region
cropped_image = image_rgb[y_min:y_max, x_min:x_max]
if cropped_image.size == 0:
return None, "Empty cropped image"
return cropped_image, None
def process_frame_for_gesture(frame):
"""Process a single frame for hand gesture recognition"""
try:
# Convert to RGB for MediaPipe
if frame.shape[2] == 4: # RGBA
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
elif frame.shape[2] == 3 and frame.dtype == np.uint8:
# Assuming BGR from OpenCV
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Detect and crop hand
cropped_hand, error = detect_and_crop_hand(frame)
if error:
return {"error": error}
# Convert cropped NumPy array to PIL Image
cropped_pil = Image.fromarray(cropped_hand)
# Preprocess and predict
processed_image = preprocess_image(cropped_pil)
interpreter.set_tensor(input_details[0]['index'], processed_image)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
prediction = output_data[0]
# Get the prediction result
predicted_class_idx = int(np.argmax(prediction))
confidence = float(prediction[predicted_class_idx])
predicted_class = index_to_class.get(predicted_class_idx, f"unknown_{predicted_class_idx}")
# Return prediction info
return {
"class": predicted_class,
"confidence": confidence,
"timestamp": time.time(),
"all_predictions": {
index_to_class.get(i, f"class_{i}"): float(prediction[i])
for i in range(len(prediction))
}
}
except Exception as e:
import traceback
traceback.print_exc()
return {"error": str(e)}
# --- Define ALL FastAPI Endpoints BEFORE Mounting Gradio ---
@fastapi_app.post("/api/predict")
async def api_predict(file: UploadFile = File(...)):
try:
# Read image bytes
contents = await file.read()
# Decode image using OpenCV
nparr = np.frombuffer(contents, np.uint8)
img_cv = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if img_cv is None:
return {"error": "Could not decode image"}
# Convert BGR (OpenCV default) to RGB for PIL
img_rgb = cv2.cvtColor(img_cv, cv2.COLOR_BGR2RGB)
image_pil = Image.fromarray(img_rgb)
# Use the existing predict function (which handles cropping and prediction)
return predict(image_pil) # Assuming predict is defined above
except Exception as e:
import traceback
traceback.print_exc()
return {"error": f"Failed to process image: {e}"}
@fastapi_app.websocket("/api/stream")
async def websocket_endpoint(websocket: WebSocket):
await websocket.accept()
try:
# Get stream configuration
config_data = await websocket.receive_text()
config = json.loads(config_data)
stream_id = config.get("stream_id", f"stream_{int(time.time())}")
frame_count = 0
last_detection_time = time.time()
processing_interval = 1.0 / DETECTION_FREQUENCY # Process every N frames
while True:
# Receive frame data
data = await websocket.receive_bytes()
# Decode the image
nparr = np.frombuffer(data, np.uint8)
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if frame is None:
await websocket.send_json({"error": "Invalid frame data"})
continue
frame_count += 1
current_time = time.time()
# Process every N frames for performance
if frame_count % DETECTION_FREQUENCY == 0 or (current_time - last_detection_time) >= processing_interval:
# Process the frame for gesture recognition
result = process_frame_for_gesture(frame) # Assuming process_frame_for_gesture is defined above
if "error" not in result:
# Cache the result
detection_cache[stream_id] = result
last_detection_time = current_time
# Send results back to client
await websocket.send_json(result)
except Exception as e:
import traceback
traceback.print_exc()
print(f"WebSocket error: {e}")
finally:
print(f"WebSocket connection closed")
@fastapi_app.post("/api/video/frame")
async def process_video_frame(request: Request):
"""Process a single video frame sent from Android app"""
try:
# Get the raw bytes from the request
content = await request.body()
# Get stream ID from header if available
stream_id = request.headers.get("X-Stream-ID", f"stream_{int(time.time())}")
# Decode the image
nparr = np.frombuffer(content, np.uint8)
frame = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if frame is None:
return {"error": "Could not decode image data"}
# Process the frame
result = process_frame_for_gesture(frame) # Assuming process_frame_for_gesture is defined above
if "error" not in result:
# Cache the result for this stream
detection_cache[stream_id] = result
# Return the result
return result
else:
return result
except Exception as e:
import traceback
traceback.print_exc()
return {"error": f"Failed to process frame: {e}"}
@fastapi_app.get("/api/gestures")
def get_available_gestures():
"""Return all available gesture classes the model can recognize"""
return {"gestures": list(index_to_class.values())}
@fastapi_app.get("/health")
def health_check():
"""Simple health check endpoint"""
return {"status": "healthy", "timestamp": time.time()}
# Define the root endpoint AFTER other API endpoints but BEFORE Gradio mount
@fastapi_app.get("/")
async def root():
return {
"app": "Hand Gesture Recognition API",
"usage": {
"image_prediction": "POST /api/predict with image file",
"video_streaming": "WebSocket /api/stream or POST frames to /api/video/frame",
"available_gestures": "GET /api/gestures"
},
"android_integration": {
"single_image": "Send image as multipart/form-data to /api/predict",
"video_stream": "Send individual frames to /api/video/frame with X-Stream-ID header",
"websocket": "Connect to /api/stream for bidirectional communication"
}
}
# --- Now define and mount the Gradio App ---
gradio_app = gr.Blocks()
with gradio_app:
gr.Markdown("# Hand Gesture Recognition")
with gr.Row():
input_image = gr.Image(type="pil", label="Upload Image")
output_json = gr.JSON(label="Prediction Results")
submit = gr.Button("Predict")
submit.click(
fn=predict, # Make sure 'predict' function is defined above
inputs=input_image,
outputs=output_json
)
gr.Examples(
examples=[["examples/two_up.jpg"], ["examples/call.jpg"], ["examples/stop.jpg"]],
inputs=input_image
)
# Add information about API endpoints for Android integration
gr.Markdown("""
## API Endpoints for Android Integration
- **Image Upload**: `POST /api/predict` with image file
- **Video Frame**: `POST /api/video/frame` with frame data and X-Stream-ID header
- **WebSocket Stream**: Connect to `/api/stream` for real-time processing
- **Available Gestures**: `GET /api/gestures` returns all gesture classes
- **Health Check**: `GET /health` checks server status
""")
# Mount Gradio app to FastAPI AFTER defining FastAPI endpoints
app = gr.mount_gradio_app(fastapi_app, gradio_app, path="/")
# --- Uvicorn runner remains the same ---
if __name__ == "__main__":
# Modified for Hugging Face Spaces environment
uvicorn.run(
app, # Use the final 'app' instance returned by mount_gradio_app
host="0.0.0.0",
port=7860,
root_path="",
forwarded_allow_ips="*"
) |