Spaces:
Build error
title: GDG Aranjuez - Backend inference endpoints docker
emoji: 📊
colorFrom: yellow
colorTo: red
sdk: docker
pinned: false
license: apache-2.0
short_description: Creamos un backend con docker, langchain, fastapi e inferende endpoints
app_port: 7860
SmolLM2 Backend
This project implements a FastAPI API that uses LangChain and LangGraph to generate text with the Qwen2.5-72B-Instruct model from HuggingFace.
Configuration
In HuggingFace Spaces
This project is designed to run in HuggingFace Spaces. To configure it:
- Create a new Space in HuggingFace with SDK Docker
- Configure the
HUGGINGFACE_TOKEN
orHF_TOKEN
environment variable in the Space configuration:- Go to the "Settings" tab of your Space
- Scroll down to the "Repository secrets" section
- Add a new variable with the name
HUGGINGFACE_TOKEN
and your token as the value - Save the changes
Local development
For local development:
- Clone this repository
- Create a
.env
file in the project root with your HuggingFace token:HUGGINGFACE_TOKEN=your_token_here
- Install the dependencies:
pip install -r requirements.txt
Local execution
bash uvicorn app:app --reload
The API will be available at http://localhost:8000
.
Endpoints
GET /
Welcome endpoint that returns a greeting message.
POST /generate
Endpoint to generate text using the language model.
Request parameters:
json { "query": "Your question here", "thread_id": "optional_thread_identifier" }
Response:
json { "generated_text": "Generated text by the model", "thread_id": "thread identifier" }
Docker
To run the application in a Docker container:
``bash
Build the image
docker build -t smollm2-backend .
Run the container
docker run -p 8000:8000 --env-file .env smollm2-backend ``
API documentation
The interactive API documentation is available at:
- Swagger UI:
http://localhost:8000/docs
- ReDoc:
http://localhost:8000/redoc