Vision_tester / app.py
Daemontatox's picture
Update app.py
cd3a11d verified
raw
history blame
9.94 kB
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
from PIL import Image
import requests
import torch
from threading import Thread
import gradio as gr
from gradio import FileData
import time
import spaces
import fitz # PyMuPDF
import io
import numpy as np
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load model and processor
ckpt = "Daemontatox/DocumentCogito"
model = MllamaForConditionalGeneration.from_pretrained(ckpt, torch_dtype=torch.bfloat16).to("cuda")
processor = AutoProcessor.from_pretrained(ckpt)
class DocumentState:
def __init__(self):
self.current_doc_images = []
self.current_doc_text = ""
self.doc_type = None
def clear(self):
self.current_doc_images = []
self.current_doc_text = ""
self.doc_type = None
doc_state = DocumentState()
def process_pdf_file(file_path):
"""
Convert PDF to images and extract text using PyMuPDF with improved error handling
and image quality settings.
"""
try:
doc = fitz.open(file_path)
images = []
text = ""
for page_num in range(doc.page_count):
try:
page = doc[page_num]
# Extract text with better formatting
page_text = page.get_text("text")
if page_text.strip(): # Only add non-empty pages
text += f"Page {page_num + 1}:\n{page_text}\n\n"
# Improved image extraction with error handling
try:
# Use higher DPI for better quality
zoom = 2 # Increase zoom factor for better resolution
mat = fitz.Matrix(zoom, zoom)
pix = page.get_pixmap(matrix=mat, alpha=False)
# Convert to PIL Image with proper color handling
img_data = pix.tobytes("png")
img = Image.open(io.BytesIO(img_data))
# Ensure RGB mode and reasonable size
img = img.convert("RGB")
# Resize if image is too large (keeping aspect ratio)
max_size = 1600
if max(img.size) > max_size:
ratio = max_size / max(img.size)
new_size = tuple(int(dim * ratio) for dim in img.size)
img = img.resize(new_size, Image.Resampling.LANCZOS)
images.append(img)
except Exception as e:
logger.error(f"Error processing page {page_num} image: {str(e)}")
continue
except Exception as e:
logger.error(f"Error processing page {page_num}: {str(e)}")
continue
doc.close()
if not images:
raise ValueError("No valid images could be extracted from the PDF")
return images, text
except Exception as e:
logger.error(f"Error processing PDF file: {str(e)}")
raise
def process_file(file):
"""Process either PDF or image file with improved error handling."""
try:
doc_state.clear()
if isinstance(file, dict):
file_path = file["path"]
else:
file_path = file
if file_path.lower().endswith('pdf'):
doc_state.doc_type = 'pdf'
try:
doc_state.current_doc_images, doc_state.current_doc_text = process_pdf_file(file_path)
return f"PDF processed successfully. Total pages: {len(doc_state.current_doc_images)}. You can now ask questions about the content."
except Exception as e:
return f"Error processing PDF: {str(e)}. Please try a different PDF file or check if the file is corrupted."
else:
doc_state.doc_type = 'image'
try:
img = Image.open(file_path).convert("RGB")
# Resize if necessary
max_size = 1600
if max(img.size) > max_size:
ratio = max_size / max(img.size)
new_size = tuple(int(dim * ratio) for dim in img.size)
img = img.resize(new_size, Image.Resampling.LANCZOS)
doc_state.current_doc_images = [img]
return "Image loaded successfully. You can now ask questions about the content."
except Exception as e:
return f"Error processing image: {str(e)}. Please try a different image file."
except Exception as e:
logger.error(f"Error in process_file: {str(e)}")
return "An error occurred while processing the file. Please try again."
@spaces.GPU()
def bot_streaming(message, history, max_new_tokens=8192):
try:
txt = message["text"]
messages = []
# Process new file if provided
if message.get("files") and len(message["files"]) > 0:
result = process_file(message["files"][0])
if "Error" in result:
yield result
return
# Process history with better error handling
for i, msg in enumerate(history):
try:
if isinstance(msg[0], dict):
user_content = [{"type": "text", "text": msg[0]["text"]}]
if "files" in msg[0] and len(msg[0]["files"]) > 0:
user_content.append({"type": "image"})
messages.append({"role": "user", "content": user_content})
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
elif isinstance(msg[0], str):
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
except Exception as e:
logger.error(f"Error processing history message {i}: {str(e)}")
continue
# Include document context
if doc_state.current_doc_images:
context = f"\nDocument context:\n{doc_state.current_doc_text}" if doc_state.current_doc_text else ""
current_msg = f"{txt}{context}"
messages.append({"role": "user", "content": [{"type": "text", "text": current_msg}, {"type": "image"}]})
else:
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
# Process inputs
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
try:
if doc_state.current_doc_images:
inputs = processor(
text=texts,
images=doc_state.current_doc_images[0:1],
return_tensors="pt"
).to("cuda")
else:
inputs = processor(text=texts, return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
except Exception as e:
logger.error(f"Error in model processing: {str(e)}")
yield "An error occurred while processing your request. Please try again."
except Exception as e:
logger.error(f"Error in bot_streaming: {str(e)}")
yield "An error occurred. Please try again."
def clear_context():
"""Clear the current document context."""
doc_state.clear()
return "Document context cleared. You can upload a new document."
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Document Analyzer with Chat Support")
gr.Markdown("Upload a PDF or image and chat about its contents. For PDFs, all pages will be processed for visual analysis.")
chatbot = gr.ChatInterface(
fn=bot_streaming,
title="Document Chat",
examples=[
[{"text": "Which era does this piece belong to? Give details about the era.", "files":["./examples/rococo.jpg"]}, 200],
[{"text": "Where do the droughts happen according to this diagram?", "files":["./examples/weather_events.png"]}, 250],
[{"text": "What happens when you take out white cat from this chain?", "files":["./examples/ai2d_test.jpg"]}, 250],
[{"text": "How long does it take from invoice date to due date? Be short and concise.", "files":["./examples/invoice.png"]}, 250],
[{"text": "Where to find this monument? Can you give me other recommendations around the area?", "files":["./examples/wat_arun.jpg"]}, 250],
],
textbox=gr.MultimodalTextbox(),
additional_inputs=[
gr.Slider(
minimum=10,
maximum=2048,
value=8192,
step=10,
label="Maximum number of new tokens to generate",
)
],
cache_examples=False,
stop_btn="Stop Generation",
fill_height=True,
multimodal=True
)
clear_btn = gr.Button("Clear Document Context")
clear_btn.click(fn=clear_context)
chatbot.textbox.file_types = ["image", "pdf", "text"]
# Launch the interface
demo.launch(debug=True)