Maverick98's picture
Create app.py
2294c6e verified
raw
history blame
3.28 kB
import gradio as gr
from transformers import AutoModel, AutoTokenizer
import torch
import json
import requests
from PIL import Image
from torchvision import transforms
import urllib.request
# Load the label-to-class mapping from your Hugging Face repository
label_map_url = "https://huggingface.co/Maverick98/EcommerceClassifier/resolve/main/label_to_class.json"
label_to_class = requests.get(label_map_url).json()
# Load the model and tokenizer from your Hugging Face repository
model = AutoModel.from_pretrained("Maverick98/EcommerceClassifier")
tokenizer = AutoTokenizer.from_pretrained("jinaai/jina-embeddings-v2-base-en")
# Define image preprocessing
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def load_image(image_path_or_url):
"""
Load an image from a URL or local path and preprocess it.
"""
if image_path_or_url.startswith("http"):
with urllib.request.urlopen(image_path_or_url) as url:
image = Image.open(url).convert('RGB')
else:
image = Image.open(image_path_or_url).convert('RGB')
image = transform(image)
image = image.unsqueeze(0) # Add batch dimension
return image
def predict(image_path_or_url, title, threshold=0.7):
"""
Predict the top 3 categories for the given image and title.
Includes "Others" if the confidence of the top prediction is below the threshold.
"""
# Preprocess the image
image = load_image(image_path_or_url)
# Tokenize the title
title_encoding = tokenizer(title, padding='max_length', max_length=32, truncation=True, return_tensors='pt')
input_ids = title_encoding['input_ids']
attention_mask = title_encoding['attention_mask']
# Predict
model.eval()
with torch.no_grad():
output = model(image, input_ids=input_ids, attention_mask=attention_mask)
probabilities = torch.nn.functional.softmax(output, dim=1)
top3_probabilities, top3_indices = torch.topk(probabilities, 3, dim=1)
# Map the top 3 indices to class names
top3_classes = [label_to_class[str(idx.item())] for idx in top3_indices[0]]
# Check if the highest probability is below the threshold
if top3_probabilities[0][0].item() < threshold:
top3_classes.insert(0, "Others")
top3_probabilities = torch.cat((torch.tensor([[1.0 - top3_probabilities[0][0].item()]]), top3_probabilities), dim=1)
# Prepare the output as a dictionary
results = {}
for i in range(len(top3_classes)):
results[top3_classes[i]] = top3_probabilities[0][i].item()
return results
# Define the Gradio interface
title_input = gr.inputs.Textbox(label="Product Title", placeholder="Enter the product title here...")
image_input = gr.inputs.Textbox(label="Image URL or Path", placeholder="Enter image URL or local path here...")
output = gr.outputs.JSON(label="Top 3 Predictions with Probabilities")
gr.Interface(
fn=predict,
inputs=[image_input, title_input],
outputs=output,
title="Ecommerce Classifier",
description="This model classifies ecommerce products into one of 434 categories. If the model is unsure, it outputs 'Others'.",
).launch()