Maverick98 commited on
Commit
2294c6e
·
verified ·
1 Parent(s): d016347

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -0
app.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModel, AutoTokenizer
3
+ import torch
4
+ import json
5
+ import requests
6
+ from PIL import Image
7
+ from torchvision import transforms
8
+ import urllib.request
9
+
10
+ # Load the label-to-class mapping from your Hugging Face repository
11
+ label_map_url = "https://huggingface.co/Maverick98/EcommerceClassifier/resolve/main/label_to_class.json"
12
+ label_to_class = requests.get(label_map_url).json()
13
+
14
+ # Load the model and tokenizer from your Hugging Face repository
15
+ model = AutoModel.from_pretrained("Maverick98/EcommerceClassifier")
16
+ tokenizer = AutoTokenizer.from_pretrained("jinaai/jina-embeddings-v2-base-en")
17
+
18
+ # Define image preprocessing
19
+ transform = transforms.Compose([
20
+ transforms.Resize((224, 224)),
21
+ transforms.ToTensor(),
22
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
23
+ ])
24
+
25
+ def load_image(image_path_or_url):
26
+ """
27
+ Load an image from a URL or local path and preprocess it.
28
+ """
29
+ if image_path_or_url.startswith("http"):
30
+ with urllib.request.urlopen(image_path_or_url) as url:
31
+ image = Image.open(url).convert('RGB')
32
+ else:
33
+ image = Image.open(image_path_or_url).convert('RGB')
34
+
35
+ image = transform(image)
36
+ image = image.unsqueeze(0) # Add batch dimension
37
+ return image
38
+
39
+ def predict(image_path_or_url, title, threshold=0.7):
40
+ """
41
+ Predict the top 3 categories for the given image and title.
42
+ Includes "Others" if the confidence of the top prediction is below the threshold.
43
+ """
44
+ # Preprocess the image
45
+ image = load_image(image_path_or_url)
46
+
47
+ # Tokenize the title
48
+ title_encoding = tokenizer(title, padding='max_length', max_length=32, truncation=True, return_tensors='pt')
49
+ input_ids = title_encoding['input_ids']
50
+ attention_mask = title_encoding['attention_mask']
51
+
52
+ # Predict
53
+ model.eval()
54
+ with torch.no_grad():
55
+ output = model(image, input_ids=input_ids, attention_mask=attention_mask)
56
+ probabilities = torch.nn.functional.softmax(output, dim=1)
57
+ top3_probabilities, top3_indices = torch.topk(probabilities, 3, dim=1)
58
+
59
+ # Map the top 3 indices to class names
60
+ top3_classes = [label_to_class[str(idx.item())] for idx in top3_indices[0]]
61
+
62
+ # Check if the highest probability is below the threshold
63
+ if top3_probabilities[0][0].item() < threshold:
64
+ top3_classes.insert(0, "Others")
65
+ top3_probabilities = torch.cat((torch.tensor([[1.0 - top3_probabilities[0][0].item()]]), top3_probabilities), dim=1)
66
+
67
+ # Prepare the output as a dictionary
68
+ results = {}
69
+ for i in range(len(top3_classes)):
70
+ results[top3_classes[i]] = top3_probabilities[0][i].item()
71
+
72
+ return results
73
+
74
+ # Define the Gradio interface
75
+ title_input = gr.inputs.Textbox(label="Product Title", placeholder="Enter the product title here...")
76
+ image_input = gr.inputs.Textbox(label="Image URL or Path", placeholder="Enter image URL or local path here...")
77
+ output = gr.outputs.JSON(label="Top 3 Predictions with Probabilities")
78
+
79
+ gr.Interface(
80
+ fn=predict,
81
+ inputs=[image_input, title_input],
82
+ outputs=output,
83
+ title="Ecommerce Classifier",
84
+ description="This model classifies ecommerce products into one of 434 categories. If the model is unsure, it outputs 'Others'.",
85
+ ).launch()