Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModel, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
import json
|
5 |
+
import requests
|
6 |
+
from PIL import Image
|
7 |
+
from torchvision import transforms
|
8 |
+
import urllib.request
|
9 |
+
|
10 |
+
# Load the label-to-class mapping from your Hugging Face repository
|
11 |
+
label_map_url = "https://huggingface.co/Maverick98/EcommerceClassifier/resolve/main/label_to_class.json"
|
12 |
+
label_to_class = requests.get(label_map_url).json()
|
13 |
+
|
14 |
+
# Load the model and tokenizer from your Hugging Face repository
|
15 |
+
model = AutoModel.from_pretrained("Maverick98/EcommerceClassifier")
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained("jinaai/jina-embeddings-v2-base-en")
|
17 |
+
|
18 |
+
# Define image preprocessing
|
19 |
+
transform = transforms.Compose([
|
20 |
+
transforms.Resize((224, 224)),
|
21 |
+
transforms.ToTensor(),
|
22 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
23 |
+
])
|
24 |
+
|
25 |
+
def load_image(image_path_or_url):
|
26 |
+
"""
|
27 |
+
Load an image from a URL or local path and preprocess it.
|
28 |
+
"""
|
29 |
+
if image_path_or_url.startswith("http"):
|
30 |
+
with urllib.request.urlopen(image_path_or_url) as url:
|
31 |
+
image = Image.open(url).convert('RGB')
|
32 |
+
else:
|
33 |
+
image = Image.open(image_path_or_url).convert('RGB')
|
34 |
+
|
35 |
+
image = transform(image)
|
36 |
+
image = image.unsqueeze(0) # Add batch dimension
|
37 |
+
return image
|
38 |
+
|
39 |
+
def predict(image_path_or_url, title, threshold=0.7):
|
40 |
+
"""
|
41 |
+
Predict the top 3 categories for the given image and title.
|
42 |
+
Includes "Others" if the confidence of the top prediction is below the threshold.
|
43 |
+
"""
|
44 |
+
# Preprocess the image
|
45 |
+
image = load_image(image_path_or_url)
|
46 |
+
|
47 |
+
# Tokenize the title
|
48 |
+
title_encoding = tokenizer(title, padding='max_length', max_length=32, truncation=True, return_tensors='pt')
|
49 |
+
input_ids = title_encoding['input_ids']
|
50 |
+
attention_mask = title_encoding['attention_mask']
|
51 |
+
|
52 |
+
# Predict
|
53 |
+
model.eval()
|
54 |
+
with torch.no_grad():
|
55 |
+
output = model(image, input_ids=input_ids, attention_mask=attention_mask)
|
56 |
+
probabilities = torch.nn.functional.softmax(output, dim=1)
|
57 |
+
top3_probabilities, top3_indices = torch.topk(probabilities, 3, dim=1)
|
58 |
+
|
59 |
+
# Map the top 3 indices to class names
|
60 |
+
top3_classes = [label_to_class[str(idx.item())] for idx in top3_indices[0]]
|
61 |
+
|
62 |
+
# Check if the highest probability is below the threshold
|
63 |
+
if top3_probabilities[0][0].item() < threshold:
|
64 |
+
top3_classes.insert(0, "Others")
|
65 |
+
top3_probabilities = torch.cat((torch.tensor([[1.0 - top3_probabilities[0][0].item()]]), top3_probabilities), dim=1)
|
66 |
+
|
67 |
+
# Prepare the output as a dictionary
|
68 |
+
results = {}
|
69 |
+
for i in range(len(top3_classes)):
|
70 |
+
results[top3_classes[i]] = top3_probabilities[0][i].item()
|
71 |
+
|
72 |
+
return results
|
73 |
+
|
74 |
+
# Define the Gradio interface
|
75 |
+
title_input = gr.inputs.Textbox(label="Product Title", placeholder="Enter the product title here...")
|
76 |
+
image_input = gr.inputs.Textbox(label="Image URL or Path", placeholder="Enter image URL or local path here...")
|
77 |
+
output = gr.outputs.JSON(label="Top 3 Predictions with Probabilities")
|
78 |
+
|
79 |
+
gr.Interface(
|
80 |
+
fn=predict,
|
81 |
+
inputs=[image_input, title_input],
|
82 |
+
outputs=output,
|
83 |
+
title="Ecommerce Classifier",
|
84 |
+
description="This model classifies ecommerce products into one of 434 categories. If the model is unsure, it outputs 'Others'.",
|
85 |
+
).launch()
|