File size: 2,462 Bytes
c2f1b61
3cbf55f
 
c2f1b61
3cbf55f
c2f1b61
 
 
 
 
 
3cbf55f
 
 
c2f1b61
3cbf55f
 
c2f1b61
 
3cbf55f
 
c2f1b61
 
3cbf55f
c2f1b61
 
3cbf55f
c2f1b61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cbf55f
c2f1b61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cbf55f
c2f1b61
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import os
import torch

import streamlit as st

from dotenv import load_dotenv
from peft import PeftModel, PeftConfig
from chromadb import HttpClient
from utils.embedding_utils import CustomEmbeddingFunction
from transformers import AutoModelForCausalLM, AutoTokenizer

st.title("FormulAI")
st.write("Benvenuto FormulaAI il Chatbot riguardante la Formula Uno! Chiedimi ciò che vuoi a riguardo!")
st.write("I am a chatbot that has been fine-tuned on the FormuLLaMa-3.2-1B dataset.")

# Device and model configuration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_name = "unsloth/Llama-3.2-1B"

# Load pretrained model and tokenizer
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Load PEFT configuration and apply to model on device
adapter_name = "FormulAI/FormuLLaMa-3.2-1B-LoRA"
peft_config = PeftConfig.from_pretrained(adapter_name)
model = PeftModel(model, peft_config).to(device)

template = """Answer the following QUESTION based on the CONTEXT given.
If you do not know the answer and the CONTEXT doesn't contain the answer truthfully say "I don't know".

CONTEXT:
{context}

QUESTION:
{question}

ANSWER:
"""

if 'generated' not in st.session_state:
    st.session_state['generated'] = []

if 'past' not in st.session_state:
    st.session_state['past'] = []

def get_text():
    input_text = st.text_input("Chiedi qualcosa: ", "", key="input")
    return input_text 

load_dotenv("chroma.env")
chroma_host = os.getenv("CHROMA_HOST", "localhost")
chroma_port = os.getenv("CHROMA_PORT", 8000)
chroma_collection = os.getenv("CHROMA_COLLECTION", "F1-wiki")

chroma_client = HttpClient(host=chroma_host, port=chroma_port)

collection = chroma_client.get_collection(name="F1-wiki", embedding_function=CustomEmbeddingFunction())

question = get_text()

if question:
    response = collection.query(query_texts=question, include=['documents'], n_results=5)

    context = " ".join(response['documents'][0])

    input_text = template.replace("{context}", context).replace("{question}", question)
    input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)

    output = model.generate(input_ids, max_new_tokens=200, early_stopping=True)
    answer = tokenizer.decode(output[0], skip_special_tokens=True).split("ANSWER:")[1]

    st.session_state.past.append(question)
    st.session_state.generated.append(answer)

    st.write(answer)