Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from peft import PeftModel, PeftConfig
|
5 |
+
from chromadb import HttpClient
|
6 |
+
from utils.embedding_utils import CustomEmbeddingFunction
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
+
|
9 |
+
st.title("FormulAI Q&A")
|
10 |
+
|
11 |
+
model_name = "unsloth/Llama-3.2-1B"
|
12 |
+
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
+
|
16 |
+
adapter_name = "FormulAI/FormuLLaMa-3.2-1B-LoRA"
|
17 |
+
peft_config = PeftConfig.from_pretrained(adapter_name)
|
18 |
+
|
19 |
+
model = PeftModel(model, peft_config)
|
20 |
+
|
21 |
+
template = """Answer the following QUESTION based on the CONTEXT given.
|
22 |
+
If you do not know the answer and the CONTEXT doesn't contain the answer truthfully say "I don't know".
|
23 |
+
|
24 |
+
CONTEXT:
|
25 |
+
{context}
|
26 |
+
|
27 |
+
QUESTION:
|
28 |
+
{question}
|
29 |
+
|
30 |
+
ANSWER:
|
31 |
+
"""
|
32 |
+
|
33 |
+
if 'generated' not in st.session_state:
|
34 |
+
st.session_state['generated'] = []
|
35 |
+
|
36 |
+
if 'past' not in st.session_state:
|
37 |
+
st.session_state['past'] = []
|
38 |
+
|
39 |
+
def get_text():
|
40 |
+
input_text = st.text_input("Chiedi qualcosa: ", "", key="input")
|
41 |
+
return input_text
|
42 |
+
|
43 |
+
load_dotenv("chroma.env")
|
44 |
+
chroma_host = os.getenv("CHROMA_HOST", "localhost")
|
45 |
+
chroma_port = os.getenv("CHROMA_PORT", 8000)
|
46 |
+
chroma_collection = os.getenv("CHROMA_COLLECTION", "F1-wiki")
|
47 |
+
|
48 |
+
chroma_client = HttpClient(host=chroma_host, port=chroma_port)
|
49 |
+
|
50 |
+
collection = chroma_client.get_collection(name="F1-wiki", embedding_function=CustomEmbeddingFunction())
|
51 |
+
|
52 |
+
question = get_text()
|
53 |
+
|
54 |
+
if question:
|
55 |
+
response = collection.query(query_texts=question, include=['documents'], n_results=5)
|
56 |
+
|
57 |
+
context = " ".join(response['documents'][0])
|
58 |
+
|
59 |
+
input_text = template.replace("{context}", context).replace("{question}", question)
|
60 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
61 |
+
|
62 |
+
output = model.generate(input_ids, max_new_tokens=200, early_stopping=True)
|
63 |
+
answer = tokenizer.decode(output[0], skip_special_tokens=True).split("ANSWER:")[1]
|
64 |
+
|
65 |
+
|
66 |
+
st.session_state.past.append(question)
|
67 |
+
st.session_state.generated.append(answer)
|
68 |
+
|
69 |
+
st.write(answer)
|