Spaces:
Runtime error
Runtime error
File size: 10,610 Bytes
200bf7b eb19fd4 200bf7b eb19fd4 200bf7b 27d82ef 200bf7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
# # Not ready to use yet
# import spaces
# import argparse
# import numpy as np
# import gradio as gr
# from omegaconf import OmegaConf
# import torch
# from PIL import Image
# import PIL
# from pipelines import TwoStagePipeline
# from huggingface_hub import hf_hub_download
# import os
# import rembg
# from typing import Any
# import json
# import os
# import json
# import argparse
# from model import CRM
# from inference import generate3d
# pipeline = None
# rembg_session = rembg.new_session()
# def expand_to_square(image, bg_color=(0, 0, 0, 0)):
# # expand image to 1:1
# width, height = image.size
# if width == height:
# return image
# new_size = (max(width, height), max(width, height))
# new_image = Image.new("RGBA", new_size, bg_color)
# paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
# new_image.paste(image, paste_position)
# return new_image
# def check_input_image(input_image):
# if input_image is None:
# raise gr.Error("No image uploaded!")
# def remove_background(
# image: PIL.Image.Image,
# rembg_session: Any = None,
# force: bool = False,
# **rembg_kwargs,
# ) -> PIL.Image.Image:
# do_remove = True
# if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
# # explain why current do not rm bg
# print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
# background = Image.new("RGBA", image.size, (0, 0, 0, 0))
# image = Image.alpha_composite(background, image)
# do_remove = False
# do_remove = do_remove or force
# if do_remove:
# image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
# return image
# def do_resize_content(original_image: Image, scale_rate):
# # resize image content wile retain the original image size
# if scale_rate != 1:
# # Calculate the new size after rescaling
# new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
# # Resize the image while maintaining the aspect ratio
# resized_image = original_image.resize(new_size)
# # Create a new image with the original size and black background
# padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
# paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
# padded_image.paste(resized_image, paste_position)
# return padded_image
# else:
# return original_image
# def add_background(image, bg_color=(255, 255, 255)):
# # given an RGBA image, alpha channel is used as mask to add background color
# background = Image.new("RGBA", image.size, bg_color)
# return Image.alpha_composite(background, image)
# def preprocess_image(image, background_choice, foreground_ratio, backgroud_color):
# """
# input image is a pil image in RGBA, return RGB image
# """
# print(background_choice)
# if background_choice == "Alpha as mask":
# background = Image.new("RGBA", image.size, (0, 0, 0, 0))
# image = Image.alpha_composite(background, image)
# else:
# image = remove_background(image, rembg_session, force=True)
# image = do_resize_content(image, foreground_ratio)
# image = expand_to_square(image)
# image = add_background(image, backgroud_color)
# return image.convert("RGB")
# @spaces.GPU
# def gen_image(input_image, seed, scale, step):
# global pipeline, model, args
# pipeline.set_seed(seed)
# rt_dict = pipeline(input_image, scale=scale, step=step)
# stage1_images = rt_dict["stage1_images"]
# stage2_images = rt_dict["stage2_images"]
# np_imgs = np.concatenate(stage1_images, 1)
# np_xyzs = np.concatenate(stage2_images, 1)
# glb_path = generate3d(model, np_imgs, np_xyzs, args.device)
# return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path#, obj_path
# parser = argparse.ArgumentParser()
# parser.add_argument(
# "--stage1_config",
# type=str,
# default="configs/nf7_v3_SNR_rd_size_stroke.yaml",
# help="config for stage1",
# )
# parser.add_argument(
# "--stage2_config",
# type=str,
# default="configs/stage2-v2-snr.yaml",
# help="config for stage2",
# )
# parser.add_argument("--device", type=str, default="cuda")
# args = parser.parse_args()
# crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
# specs = json.load(open("configs/specs_objaverse_total.json"))
# model = CRM(specs)
# model.load_state_dict(torch.load(crm_path, map_location="cpu"), strict=False)
# model = model.to(args.device)
# stage1_config = OmegaConf.load(args.stage1_config).config
# stage2_config = OmegaConf.load(args.stage2_config).config
# stage2_sampler_config = stage2_config.sampler
# stage1_sampler_config = stage1_config.sampler
# stage1_model_config = stage1_config.models
# stage2_model_config = stage2_config.models
# xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth")
# pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth")
# stage1_model_config.resume = pixel_path
# stage2_model_config.resume = xyz_path
# pipeline = TwoStagePipeline(
# stage1_model_config,
# stage2_model_config,
# stage1_sampler_config,
# stage2_sampler_config,
# device=args.device,
# dtype=torch.float32
# )
# _DESCRIPTION = '''
# * Our [official implementation](https://github.com/thu-ml/CRM) uses UV texture instead of vertex color. It has better texture than this online demo.
# * Project page of CRM: https://ml.cs.tsinghua.edu.cn/~zhengyi/CRM/
# * If you find the output unsatisfying, try using different seeds:)
# '''
# with gr.Blocks() as demo:
# gr.Markdown("# CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model")
# gr.Markdown(_DESCRIPTION)
# with gr.Row():
# with gr.Column():
# with gr.Row():
# image_input = gr.Image(
# label="Image input",
# image_mode="RGBA",
# sources="upload",
# type="pil",
# )
# processed_image = gr.Image(label="Processed Image", interactive=False, type="pil", image_mode="RGB")
# with gr.Row():
# with gr.Column():
# with gr.Row():
# background_choice = gr.Radio([
# "Alpha as mask",
# "Auto Remove background"
# ], value="Auto Remove background",
# label="backgroud choice")
# # do_remove_background = gr.Checkbox(label=, value=True)
# # force_remove = gr.Checkbox(label=, value=False)
# back_groud_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=False)
# foreground_ratio = gr.Slider(
# label="Foreground Ratio",
# minimum=0.5,
# maximum=1.0,
# value=1.0,
# step=0.05,
# )
# with gr.Column():
# seed = gr.Number(value=1234, label="seed", precision=0)
# guidance_scale = gr.Number(value=5.5, minimum=3, maximum=10, label="guidance_scale")
# step = gr.Number(value=30, minimum=30, maximum=100, label="sample steps", precision=0)
# text_button = gr.Button("Generate 3D shape")
# gr.Examples(
# examples=[os.path.join("examples", i) for i in os.listdir("examples")],
# inputs=[image_input],
# examples_per_page = 20,
# )
# with gr.Column():
# image_output = gr.Image(interactive=False, label="Output RGB image")
# xyz_ouput = gr.Image(interactive=False, label="Output CCM image")
# output_model = gr.Model3D(
# label="Output OBJ",
# interactive=False,
# )
# gr.Markdown("Note: Ensure that the input image is correctly pre-processed into a grey background, otherwise the results will be unpredictable.")
# inputs = [
# processed_image,
# seed,
# guidance_scale,
# step,
# ]
# outputs = [
# image_output,
# xyz_ouput,
# output_model,
# # output_obj,
# ]
# text_button.click(fn=check_input_image, inputs=[image_input]).success(
# fn=preprocess_image,
# inputs=[image_input, background_choice, foreground_ratio, back_groud_color],
# outputs=[processed_image],
# ).success(
# fn=gen_image,
# inputs=inputs,
# outputs=outputs,
# )
# demo.queue().launch()
import torch
import gradio as gr
import requests
import os
# Download model weights from Hugging Face model repo (if not already present)
model_repo = "Mariam-Elz/CRM" # Your Hugging Face model repo
model_files = {
"ccm-diffusion.pth": "ccm-diffusion.pth",
"pixel-diffusion.pth": "pixel-diffusion.pth",
"CRM.pth": "CRM.pth",
}
os.makedirs("models", exist_ok=True)
for filename, output_path in model_files.items():
file_path = f"models/{output_path}"
if not os.path.exists(file_path):
url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
print(f"Downloading {filename}...")
response = requests.get(url)
with open(file_path, "wb") as f:
f.write(response.content)
# Load model (This part depends on how the model is defined)
device = "cuda" if torch.cuda.is_available() else "cpu"
def load_model():
model_path = "models/CRM.pth"
model = torch.load(model_path, map_location=device)
model.eval()
return model
model = load_model()
# Define inference function
def infer(image):
"""Process input image and return a reconstructed image."""
with torch.no_grad():
# Assuming model expects a tensor input
image_tensor = torch.tensor(image).to(device)
output = model(image_tensor)
return output.cpu().numpy()
# Create Gradio UI
demo = gr.Interface(
fn=infer,
inputs=gr.Image(type="numpy"),
outputs=gr.Image(type="numpy"),
title="Convolutional Reconstruction Model",
description="Upload an image to get the reconstructed output."
)
if __name__ == "__main__":
demo.launch()
|