Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -79,62 +79,62 @@
|
|
79 |
# demo.launch()
|
80 |
########################3rd-MAIN######################3
|
81 |
|
82 |
-
import torch
|
83 |
-
import gradio as gr
|
84 |
-
import requests
|
85 |
-
import os
|
86 |
|
87 |
-
# Download model weights from Hugging Face model repo (if not already present)
|
88 |
-
model_repo = "Mariam-Elz/CRM" # Your Hugging Face model repo
|
89 |
|
90 |
-
model_files = {
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
}
|
95 |
|
96 |
-
os.makedirs("models", exist_ok=True)
|
97 |
|
98 |
-
for filename, output_path in model_files.items():
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
|
107 |
-
# Load model (This part depends on how the model is defined)
|
108 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
109 |
|
110 |
-
def load_model():
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
|
116 |
-
model = load_model()
|
117 |
|
118 |
-
# Define inference function
|
119 |
-
def infer(image):
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
|
127 |
-
# Create Gradio UI
|
128 |
-
demo = gr.Interface(
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
)
|
135 |
|
136 |
-
if __name__ == "__main__":
|
137 |
-
|
138 |
|
139 |
|
140 |
#################4th##################
|
@@ -264,3 +264,74 @@ if __name__ == "__main__":
|
|
264 |
|
265 |
# if __name__ == "__main__":
|
266 |
# demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
# demo.launch()
|
80 |
########################3rd-MAIN######################3
|
81 |
|
82 |
+
# import torch
|
83 |
+
# import gradio as gr
|
84 |
+
# import requests
|
85 |
+
# import os
|
86 |
|
87 |
+
# # Download model weights from Hugging Face model repo (if not already present)
|
88 |
+
# model_repo = "Mariam-Elz/CRM" # Your Hugging Face model repo
|
89 |
|
90 |
+
# model_files = {
|
91 |
+
# "ccm-diffusion.pth": "ccm-diffusion.pth",
|
92 |
+
# "pixel-diffusion.pth": "pixel-diffusion.pth",
|
93 |
+
# "CRM.pth": "CRM.pth",
|
94 |
+
# }
|
95 |
|
96 |
+
# os.makedirs("models", exist_ok=True)
|
97 |
|
98 |
+
# for filename, output_path in model_files.items():
|
99 |
+
# file_path = f"models/{output_path}"
|
100 |
+
# if not os.path.exists(file_path):
|
101 |
+
# url = f"https://huggingface.co/{model_repo}/resolve/main/{filename}"
|
102 |
+
# print(f"Downloading {filename}...")
|
103 |
+
# response = requests.get(url)
|
104 |
+
# with open(file_path, "wb") as f:
|
105 |
+
# f.write(response.content)
|
106 |
|
107 |
+
# # Load model (This part depends on how the model is defined)
|
108 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
109 |
|
110 |
+
# def load_model():
|
111 |
+
# model_path = "models/CRM.pth"
|
112 |
+
# model = torch.load(model_path, map_location=device)
|
113 |
+
# model.eval()
|
114 |
+
# return model
|
115 |
|
116 |
+
# model = load_model()
|
117 |
|
118 |
+
# # Define inference function
|
119 |
+
# def infer(image):
|
120 |
+
# """Process input image and return a reconstructed image."""
|
121 |
+
# with torch.no_grad():
|
122 |
+
# # Assuming model expects a tensor input
|
123 |
+
# image_tensor = torch.tensor(image).to(device)
|
124 |
+
# output = model(image_tensor)
|
125 |
+
# return output.cpu().numpy()
|
126 |
|
127 |
+
# # Create Gradio UI
|
128 |
+
# demo = gr.Interface(
|
129 |
+
# fn=infer,
|
130 |
+
# inputs=gr.Image(type="numpy"),
|
131 |
+
# outputs=gr.Image(type="numpy"),
|
132 |
+
# title="Convolutional Reconstruction Model",
|
133 |
+
# description="Upload an image to get the reconstructed output."
|
134 |
+
# )
|
135 |
|
136 |
+
# if __name__ == "__main__":
|
137 |
+
# demo.launch()
|
138 |
|
139 |
|
140 |
#################4th##################
|
|
|
264 |
|
265 |
# if __name__ == "__main__":
|
266 |
# demo.launch()
|
267 |
+
|
268 |
+
|
269 |
+
#############6th##################
|
270 |
+
import torch
|
271 |
+
import gradio as gr
|
272 |
+
import requests
|
273 |
+
import os
|
274 |
+
import numpy as np
|
275 |
+
|
276 |
+
# Hugging Face Model Repository
|
277 |
+
model_repo = "Mariam-Elz/CRM"
|
278 |
+
|
279 |
+
# Download Model Weights (Only CRM.pth to Save Memory)
|
280 |
+
model_path = "models/CRM.pth"
|
281 |
+
os.makedirs("models", exist_ok=True)
|
282 |
+
|
283 |
+
if not os.path.exists(model_path):
|
284 |
+
url = f"https://huggingface.co/{model_repo}/resolve/main/CRM.pth"
|
285 |
+
print(f"Downloading CRM.pth...")
|
286 |
+
response = requests.get(url)
|
287 |
+
with open(model_path, "wb") as f:
|
288 |
+
f.write(response.content)
|
289 |
+
|
290 |
+
# Set Device (Use CPU to Reduce RAM Usage)
|
291 |
+
device = "cpu"
|
292 |
+
|
293 |
+
# Load Model Efficiently
|
294 |
+
def load_model():
|
295 |
+
model = torch.load(model_path, map_location=device)
|
296 |
+
if isinstance(model, torch.nn.Module):
|
297 |
+
model.eval() # Ensure model is in inference mode
|
298 |
+
return model
|
299 |
+
|
300 |
+
# Load model only when needed (saves memory)
|
301 |
+
model = load_model()
|
302 |
+
|
303 |
+
# Define Inference Function with Memory Optimizations
|
304 |
+
def infer(image):
|
305 |
+
"""Process input image and return a reconstructed image."""
|
306 |
+
with torch.no_grad():
|
307 |
+
# Convert image to torch tensor & normalize (float16 to save RAM)
|
308 |
+
image_tensor = torch.tensor(image, dtype=torch.float16).unsqueeze(0).permute(0, 3, 1, 2) / 255.0
|
309 |
+
image_tensor = image_tensor.to(device)
|
310 |
+
|
311 |
+
# Model Inference
|
312 |
+
output = model(image_tensor)
|
313 |
+
|
314 |
+
# Convert back to numpy image format
|
315 |
+
output_image = output.squeeze(0).permute(1, 2, 0).cpu().numpy() * 255.0
|
316 |
+
output_image = np.clip(output_image, 0, 255).astype(np.uint8)
|
317 |
+
|
318 |
+
# Free Memory
|
319 |
+
del image_tensor, output
|
320 |
+
torch.cuda.empty_cache()
|
321 |
+
|
322 |
+
return output_image
|
323 |
+
|
324 |
+
# Create Gradio UI
|
325 |
+
demo = gr.Interface(
|
326 |
+
fn=infer,
|
327 |
+
inputs=gr.Image(type="numpy"),
|
328 |
+
outputs=gr.Image(type="numpy"),
|
329 |
+
title="Optimized Convolutional Reconstruction Model",
|
330 |
+
description="Upload an image to get the reconstructed output with reduced memory usage."
|
331 |
+
)
|
332 |
+
|
333 |
+
if __name__ == "__main__":
|
334 |
+
demo.launch()
|
335 |
+
|
336 |
+
|
337 |
+
|