|
from dotenv import load_dotenv |
|
import streamlit as st |
|
from langchain_community.document_loaders import UnstructuredPDFLoader |
|
from langchain_text_splitters.character import CharacterTextSplitter |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_groq import ChatGroq |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.chains import ConversationalRetrievalChain |
|
import os |
|
import nltk |
|
nltk.download('punkt_tab') |
|
nltk.download('averaged_perceptron_tagger_eng') |
|
|
|
os.system("apt-get update && apt-get install -y poppler-utils tesseract-ocr") |
|
|
|
secret = os.getenv('GROQ_API_KEY') |
|
|
|
working_dir = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
def load_documents(file_path): |
|
|
|
loader = UnstructuredPDFLoader( |
|
file_path, |
|
poppler_path="/usr/bin", |
|
tesseract_path="/usr/bin/tesseract" |
|
) |
|
documents = loader.load() |
|
return documents |
|
|
|
def setup_vectorstore(documents): |
|
embeddings = HuggingFaceEmbeddings() |
|
text_splitter = CharacterTextSplitter( |
|
separator="/n", |
|
chunk_size=1000, |
|
chunk_overlap=200 |
|
) |
|
doc_chunks = text_splitter.split_documents(documents) |
|
vectorstores = FAISS.from_documents(doc_chunks, embeddings) |
|
return vectorstores |
|
|
|
def create_chain(vectorstores): |
|
llm = ChatGroq( |
|
api_key=secret, |
|
model="deepseek-r1-distill-llama-70b", |
|
temperature=0 |
|
) |
|
retriever = vectorstores.as_retriever() |
|
memory = ConversationBufferMemory( |
|
llm=llm, |
|
output_key="answer", |
|
memory_key="chat_history", |
|
return_messages=True |
|
) |
|
chain = ConversationalRetrievalChain.from_llm( |
|
llm=llm, |
|
retriever=retriever, |
|
memory=memory, |
|
verbose=True |
|
) |
|
return chain |
|
|
|
|
|
st.set_page_config( |
|
page_title="Chat with your documents", |
|
page_icon="📑", |
|
layout="centered" |
|
) |
|
|
|
st.title("📝Chat With your docs 😎") |
|
|
|
|
|
if "chat_history" not in st.session_state: |
|
st.session_state.chat_history = [] |
|
|
|
uploaded_file = st.file_uploader(label="Upload your PDF") |
|
|
|
if uploaded_file: |
|
file_path = f"{working_dir}/{uploaded_file.name}" |
|
with open(file_path, "wb") as f: |
|
f.write(uploaded_file.getbuffer()) |
|
|
|
if "vectorstores" not in st.session_state: |
|
st.session_state.vectorstores = setup_vectorstore(load_documents(file_path)) |
|
|
|
if "conversation_chain" not in st.session_state: |
|
st.session_state.conversation_chain = create_chain(st.session_state.vectorstores) |
|
|
|
|
|
for message in st.session_state.chat_history: |
|
with st.chat_message(message["role"]): |
|
st.markdown(message["content"]) |
|
|
|
|
|
user_input = st.chat_input("Ask any questions relevant to uploaded pdf") |
|
|
|
if user_input: |
|
st.session_state.chat_history.append({"role": "user", "content": user_input}) |
|
with st.chat_message("user"): |
|
st.markdown(user_input) |
|
|
|
with st.chat_message("assistant"): |
|
response = st.session_state.conversation_chain({"question": user_input}) |
|
assistant_response = response["answer"] |
|
st.markdown(assistant_response) |
|
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response}) |