Update app.py
Browse files
app.py
CHANGED
@@ -9,24 +9,17 @@ from langchain.memory import ConversationBufferMemory
|
|
9 |
from langchain.chains import ConversationalRetrievalChain
|
10 |
import os
|
11 |
import nltk
|
12 |
-
|
13 |
-
|
14 |
-
load_dotenv()
|
15 |
-
|
16 |
-
# Download necessary NLTK data
|
17 |
-
nltk.download('punkt')
|
18 |
-
nltk.download('averaged_perceptron_tagger')
|
19 |
-
|
20 |
# Install Poppler and Tesseract in the runtime environment
|
21 |
os.system("apt-get update && apt-get install -y poppler-utils tesseract-ocr")
|
22 |
|
23 |
-
# Retrieve API key
|
24 |
secret = os.getenv('GROQ_API_KEY')
|
25 |
|
26 |
-
# Get the working directory
|
27 |
working_dir = os.path.dirname(os.path.abspath(__file__))
|
28 |
|
29 |
def load_documents(file_path):
|
|
|
30 |
loader = UnstructuredPDFLoader(
|
31 |
file_path,
|
32 |
poppler_path="/usr/bin",
|
@@ -38,7 +31,7 @@ def load_documents(file_path):
|
|
38 |
def setup_vectorstore(documents):
|
39 |
embeddings = HuggingFaceEmbeddings()
|
40 |
text_splitter = CharacterTextSplitter(
|
41 |
-
separator="
|
42 |
chunk_size=1000,
|
43 |
chunk_overlap=200
|
44 |
)
|
@@ -54,6 +47,8 @@ def create_chain(vectorstores):
|
|
54 |
)
|
55 |
retriever = vectorstores.as_retriever()
|
56 |
memory = ConversationBufferMemory(
|
|
|
|
|
57 |
memory_key="chat_history",
|
58 |
return_messages=True
|
59 |
)
|
@@ -68,7 +63,7 @@ def create_chain(vectorstores):
|
|
68 |
# Streamlit page configuration
|
69 |
st.set_page_config(
|
70 |
page_title="Chat with your documents",
|
71 |
-
page_icon="
|
72 |
layout="centered"
|
73 |
)
|
74 |
|
@@ -91,23 +86,21 @@ if uploaded_file:
|
|
91 |
if "conversation_chain" not in st.session_state:
|
92 |
st.session_state.conversation_chain = create_chain(st.session_state.vectorstores)
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
else:
|
113 |
-
st.info("Please upload a PDF to start the conversation.")
|
|
|
9 |
from langchain.chains import ConversationalRetrievalChain
|
10 |
import os
|
11 |
import nltk
|
12 |
+
nltk.download('punkt_tab')
|
13 |
+
nltk.download('averaged_perceptron_tagger_eng')
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Install Poppler and Tesseract in the runtime environment
|
15 |
os.system("apt-get update && apt-get install -y poppler-utils tesseract-ocr")
|
16 |
|
|
|
17 |
secret = os.getenv('GROQ_API_KEY')
|
18 |
|
|
|
19 |
working_dir = os.path.dirname(os.path.abspath(__file__))
|
20 |
|
21 |
def load_documents(file_path):
|
22 |
+
# Specify poppler_path and tesseract_path to ensure compatibility
|
23 |
loader = UnstructuredPDFLoader(
|
24 |
file_path,
|
25 |
poppler_path="/usr/bin",
|
|
|
31 |
def setup_vectorstore(documents):
|
32 |
embeddings = HuggingFaceEmbeddings()
|
33 |
text_splitter = CharacterTextSplitter(
|
34 |
+
separator="/n",
|
35 |
chunk_size=1000,
|
36 |
chunk_overlap=200
|
37 |
)
|
|
|
47 |
)
|
48 |
retriever = vectorstores.as_retriever()
|
49 |
memory = ConversationBufferMemory(
|
50 |
+
llm=llm,
|
51 |
+
output_key="answer",
|
52 |
memory_key="chat_history",
|
53 |
return_messages=True
|
54 |
)
|
|
|
63 |
# Streamlit page configuration
|
64 |
st.set_page_config(
|
65 |
page_title="Chat with your documents",
|
66 |
+
page_icon="📑",
|
67 |
layout="centered"
|
68 |
)
|
69 |
|
|
|
86 |
if "conversation_chain" not in st.session_state:
|
87 |
st.session_state.conversation_chain = create_chain(st.session_state.vectorstores)
|
88 |
|
89 |
+
# Display chat history
|
90 |
+
for message in st.session_state.chat_history:
|
91 |
+
with st.chat_message(message["role"]):
|
92 |
+
st.markdown(message["content"])
|
93 |
+
|
94 |
+
# User input handling
|
95 |
+
user_input = st.chat_input("Ask any questions relevant to uploaded pdf")
|
96 |
+
|
97 |
+
if user_input:
|
98 |
+
st.session_state.chat_history.append({"role": "user", "content": user_input})
|
99 |
+
with st.chat_message("user"):
|
100 |
+
st.markdown(user_input)
|
101 |
+
|
102 |
+
with st.chat_message("assistant"):
|
103 |
+
response = st.session_state.conversation_chain({"question": user_input})
|
104 |
+
assistant_response = response["answer"]
|
105 |
+
st.markdown(assistant_response)
|
106 |
+
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
|
|
|
|