DDT / src /lightning_model.py
wangshuai6
init space
9e426da
from typing import Callable, Iterable, Any, Optional, Union, Sequence, Mapping, Dict
import os.path
import copy
import torch
import torch.nn as nn
import lightning.pytorch as pl
from lightning.pytorch.utilities.types import OptimizerLRScheduler, STEP_OUTPUT
from torch.optim.lr_scheduler import LRScheduler
from torch.optim import Optimizer
from lightning.pytorch.callbacks import Callback
from src.models.vae import BaseVAE, fp2uint8
from src.models.conditioner import BaseConditioner
from src.utils.model_loader import ModelLoader
from src.callbacks.simple_ema import SimpleEMA
from src.diffusion.base.sampling import BaseSampler
from src.diffusion.base.training import BaseTrainer
from src.utils.no_grad import no_grad, filter_nograd_tensors
from src.utils.copy import copy_params
EMACallable = Callable[[nn.Module, nn.Module], SimpleEMA]
OptimizerCallable = Callable[[Iterable], Optimizer]
LRSchedulerCallable = Callable[[Optimizer], LRScheduler]
class LightningModel(pl.LightningModule):
def __init__(self,
vae: BaseVAE,
conditioner: BaseConditioner,
denoiser: nn.Module,
diffusion_trainer: BaseTrainer,
diffusion_sampler: BaseSampler,
ema_tracker: Optional[EMACallable] = None,
optimizer: OptimizerCallable = None,
lr_scheduler: LRSchedulerCallable = None,
):
super().__init__()
self.vae = vae
self.conditioner = conditioner
self.denoiser = denoiser
self.ema_denoiser = copy.deepcopy(self.denoiser)
self.diffusion_sampler = diffusion_sampler
self.diffusion_trainer = diffusion_trainer
self.ema_tracker = ema_tracker
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
# self.model_loader = ModelLoader()
self._strict_loading = False
def configure_model(self) -> None:
self.trainer.strategy.barrier()
# self.denoiser = self.model_loader.load(self.denoiser)
copy_params(src_model=self.denoiser, dst_model=self.ema_denoiser)
# self.denoiser = torch.compile(self.denoiser)
# disable grad for conditioner and vae
no_grad(self.conditioner)
no_grad(self.vae)
no_grad(self.diffusion_sampler)
no_grad(self.ema_denoiser)
def configure_callbacks(self) -> Union[Sequence[Callback], Callback]:
ema_tracker = self.ema_tracker(self.denoiser, self.ema_denoiser)
return [ema_tracker]
def configure_optimizers(self) -> OptimizerLRScheduler:
params_denoiser = filter_nograd_tensors(self.denoiser.parameters())
params_trainer = filter_nograd_tensors(self.diffusion_trainer.parameters())
optimizer: torch.optim.Optimizer = self.optimizer([*params_trainer, *params_denoiser])
if self.lr_scheduler is None:
return dict(
optimizer=optimizer
)
else:
lr_scheduler = self.lr_scheduler(optimizer)
return dict(
optimizer=optimizer,
lr_scheduler=lr_scheduler
)
def training_step(self, batch, batch_idx):
raw_images, x, y = batch
with torch.no_grad():
x = self.vae.encode(x)
condition, uncondition = self.conditioner(y)
loss = self.diffusion_trainer(self.denoiser, self.ema_denoiser, raw_images, x, condition, uncondition)
self.log_dict(loss, prog_bar=True, on_step=True, sync_dist=False)
return loss["loss"]
def predict_step(self, batch, batch_idx):
xT, y, metadata = batch
with torch.no_grad():
condition, uncondition = self.conditioner(y)
# Sample images:
samples = self.diffusion_sampler(self.denoiser, xT, condition, uncondition)
samples = self.vae.decode(samples)
# fp32 -1,1 -> uint8 0,255
samples = fp2uint8(samples)
return samples
def validation_step(self, batch, batch_idx):
samples = self.predict_step(batch, batch_idx)
return samples
def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
if destination is None:
destination = {}
self._save_to_state_dict(destination, prefix, keep_vars)
self.denoiser.state_dict(
destination=destination,
prefix=prefix+"denoiser.",
keep_vars=keep_vars)
self.ema_denoiser.state_dict(
destination=destination,
prefix=prefix+"ema_denoiser.",
keep_vars=keep_vars)
self.diffusion_trainer.state_dict(
destination=destination,
prefix=prefix+"diffusion_trainer.",
keep_vars=keep_vars)
return destination