File size: 4,798 Bytes
9e426da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from typing import Callable, Iterable, Any, Optional, Union, Sequence, Mapping, Dict
import os.path
import copy
import torch
import torch.nn as nn
import lightning.pytorch as pl
from lightning.pytorch.utilities.types import OptimizerLRScheduler, STEP_OUTPUT
from torch.optim.lr_scheduler import LRScheduler
from torch.optim import Optimizer
from lightning.pytorch.callbacks import Callback


from src.models.vae import BaseVAE, fp2uint8
from src.models.conditioner import BaseConditioner
from src.utils.model_loader import ModelLoader
from src.callbacks.simple_ema import SimpleEMA
from src.diffusion.base.sampling import BaseSampler
from src.diffusion.base.training import BaseTrainer
from src.utils.no_grad import no_grad, filter_nograd_tensors
from src.utils.copy import copy_params

EMACallable = Callable[[nn.Module, nn.Module], SimpleEMA]
OptimizerCallable = Callable[[Iterable], Optimizer]
LRSchedulerCallable = Callable[[Optimizer], LRScheduler]


class LightningModel(pl.LightningModule):
    def __init__(self,
                 vae: BaseVAE,
                 conditioner: BaseConditioner,
                 denoiser: nn.Module,
                 diffusion_trainer: BaseTrainer,
                 diffusion_sampler: BaseSampler,
                 ema_tracker: Optional[EMACallable] = None,
                 optimizer: OptimizerCallable = None,
                 lr_scheduler: LRSchedulerCallable = None,
                 ):
        super().__init__()
        self.vae = vae
        self.conditioner = conditioner
        self.denoiser = denoiser
        self.ema_denoiser = copy.deepcopy(self.denoiser)
        self.diffusion_sampler = diffusion_sampler
        self.diffusion_trainer = diffusion_trainer
        self.ema_tracker = ema_tracker
        self.optimizer = optimizer
        self.lr_scheduler = lr_scheduler
        # self.model_loader = ModelLoader()

        self._strict_loading = False

    def configure_model(self) -> None:
        self.trainer.strategy.barrier()
        # self.denoiser = self.model_loader.load(self.denoiser)
        copy_params(src_model=self.denoiser, dst_model=self.ema_denoiser)

        # self.denoiser = torch.compile(self.denoiser)
        # disable grad for conditioner and vae
        no_grad(self.conditioner)
        no_grad(self.vae)
        no_grad(self.diffusion_sampler)
        no_grad(self.ema_denoiser)

    def configure_callbacks(self) -> Union[Sequence[Callback], Callback]:
        ema_tracker = self.ema_tracker(self.denoiser, self.ema_denoiser)
        return [ema_tracker]

    def configure_optimizers(self) -> OptimizerLRScheduler:
        params_denoiser = filter_nograd_tensors(self.denoiser.parameters())
        params_trainer = filter_nograd_tensors(self.diffusion_trainer.parameters())
        optimizer: torch.optim.Optimizer = self.optimizer([*params_trainer, *params_denoiser])
        if self.lr_scheduler is None:
            return dict(
                optimizer=optimizer
            )
        else:
            lr_scheduler = self.lr_scheduler(optimizer)
            return dict(
                optimizer=optimizer,
                lr_scheduler=lr_scheduler
            )

    def training_step(self, batch, batch_idx):
        raw_images, x, y = batch
        with torch.no_grad():
            x = self.vae.encode(x)
            condition, uncondition = self.conditioner(y)
        loss = self.diffusion_trainer(self.denoiser, self.ema_denoiser, raw_images, x, condition, uncondition)
        self.log_dict(loss, prog_bar=True, on_step=True, sync_dist=False)
        return loss["loss"]

    def predict_step(self, batch, batch_idx):
        xT, y, metadata = batch
        with torch.no_grad():
            condition, uncondition = self.conditioner(y)
        # Sample images:
        samples = self.diffusion_sampler(self.denoiser, xT, condition, uncondition)
        samples = self.vae.decode(samples)
        # fp32 -1,1 -> uint8 0,255
        samples = fp2uint8(samples)
        return samples

    def validation_step(self, batch, batch_idx):
        samples = self.predict_step(batch, batch_idx)
        return samples

    def state_dict(self, *args, destination=None, prefix="", keep_vars=False):
        if destination is None:
            destination = {}
        self._save_to_state_dict(destination, prefix, keep_vars)
        self.denoiser.state_dict(
            destination=destination,
            prefix=prefix+"denoiser.",
            keep_vars=keep_vars)
        self.ema_denoiser.state_dict(
            destination=destination,
            prefix=prefix+"ema_denoiser.",
            keep_vars=keep_vars)
        self.diffusion_trainer.state_dict(
            destination=destination,
            prefix=prefix+"diffusion_trainer.",
            keep_vars=keep_vars)
        return destination