DDT / app.py
wangshuai6
app demo
0720c33
# vae:
# class_path: src.models.vae.LatentVAE
# init_args:
# precompute: true
# weight_path: /mnt/bn/wangshuai6/models/sd-vae-ft-ema/
# denoiser:
# class_path: src.models.denoiser.decoupled_improved_dit.DDT
# init_args:
# in_channels: 4
# patch_size: 2
# num_groups: 16
# hidden_size: &hidden_dim 1152
# num_blocks: 28
# num_encoder_blocks: 22
# num_classes: 1000
# conditioner:
# class_path: src.models.conditioner.LabelConditioner
# init_args:
# null_class: 1000
# diffusion_sampler:
# class_path: src.diffusion.stateful_flow_matching.sampling.EulerSampler
# init_args:
# num_steps: 250
# guidance: 3.0
# state_refresh_rate: 1
# guidance_interval_min: 0.3
# guidance_interval_max: 1.0
# timeshift: 1.0
# last_step: 0.04
# scheduler: *scheduler
# w_scheduler: src.diffusion.stateful_flow_matching.scheduling.LinearScheduler
# guidance_fn: src.diffusion.base.guidance.simple_guidance_fn
# step_fn: src.diffusion.stateful_flow_matching.sampling.ode_step_fn
import os
import torch
import spaces
import argparse
from omegaconf import OmegaConf
from src.models.vae import fp2uint8
from src.diffusion.base.guidance import simple_guidance_fn
from src.diffusion.stateful_flow_matching.sharing_sampling import EulerSampler
from src.diffusion.stateful_flow_matching.scheduling import LinearScheduler
from PIL import Image
import gradio as gr
from huggingface_hub import snapshot_download
def instantiate_class(config):
kwargs = config.get("init_args", {})
class_module, class_name = config["class_path"].rsplit(".", 1)
module = __import__(class_module, fromlist=[class_name])
args_class = getattr(module, class_name)
return args_class(**kwargs)
def load_model(weight_dict, denosier):
prefix = "ema_denoiser."
for k, v in denoiser.state_dict().items():
try:
v.copy_(weight_dict["state_dict"][prefix + k])
except:
print(f"Failed to copy {prefix + k} to denoiser weight")
return denoiser
class Pipeline:
def __init__(self, vae, denoiser, conditioner, diffusion_sampler, resolution, classlabels2ids):
self.vae = vae
self.denoiser = denoiser
self.conditioner = conditioner
self.diffusion_sampler = diffusion_sampler
self.resolution = resolution
self.classlabels2ids = classlabels2ids
@spaces.GPU
@torch.no_grad()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def __call__(self, y, num_images, seed, num_steps, guidance, state_refresh_rate, guidance_interval_min, guidance_interval_max, timeshift):
self.diffusion_sampler.num_steps = num_steps
self.diffusion_sampler.guidance = guidance
self.diffusion_sampler.state_refresh_rate = state_refresh_rate
self.diffusion_sampler.guidance_interval_min = guidance_interval_min
self.diffusion_sampler.guidance_interval_max = guidance_interval_max
self.diffusion_sampler.timeshift = timeshift
generator = torch.Generator(device="cpu").manual_seed(seed)
xT = torch.randn((num_images, 4, self.resolution//8, self.resolution//8), device="cpu", dtype=torch.float32, generator=generator)
xT = xT.to("cuda")
with torch.no_grad():
condition, uncondition = conditioner([self.classlabels2ids[y],]*num_images)
# Sample images:
samples = diffusion_sampler(denoiser, xT, condition, uncondition)
samples = vae.decode(samples)
# fp32 -1,1 -> uint8 0,255
samples = fp2uint8(samples)
samples = samples.permute(0, 2, 3, 1).cpu().numpy()
images = []
for i in range(num_images):
image = Image.fromarray(samples[i])
images.append(image)
return images
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="configs/repa_improved_ddt_xlen22de6_512.yaml")
parser.add_argument("--resolution", type=int, default=512)
parser.add_argument("--model_id", type=str, default="MCG-NJU/DDT-XL-22en6de-R512")
parser.add_argument("--ckpt_path", type=str, default="models")
args = parser.parse_args()
if not os.path.exists(args.ckpt_path):
snapshot_download(repo_id=args.model_id, local_dir=args.ckpt_path)
config = OmegaConf.load(args.config)
vae_config = config.model.vae
diffusion_sampler_config = config.model.diffusion_sampler
denoiser_config = config.model.denoiser
conditioner_config = config.model.conditioner
vae = instantiate_class(vae_config)
denoiser = instantiate_class(denoiser_config)
conditioner = instantiate_class(conditioner_config)
diffusion_sampler = EulerSampler(
scheduler=LinearScheduler(),
w_scheduler=LinearScheduler(),
guidance_fn=simple_guidance_fn,
num_steps=50,
guidance=4.0,
state_refresh_rate=1,
guidance_interval_min=0.3,
guidance_interval_max=1.0,
timeshift=1.0
)
ckpt_path = os.path.join(args.ckpt_path, "model.ckpt")
ckpt = torch.load(ckpt_path, map_location="cpu")
denoiser = load_model(ckpt, denoiser)
denoiser = denoiser.cuda()
vae = vae.cuda()
denoiser.eval()
# read imagenet classlabels
with open("imagenet_classlabels.txt", "r") as f:
classlabels = f.readlines()
classlabels = [label.strip() for label in classlabels]
classlabels2id = {label: i for i, label in enumerate(classlabels)}
id2classlabels = {i: label for i, label in enumerate(classlabels)}
pipeline = Pipeline(vae, denoiser, conditioner, diffusion_sampler, args.resolution, classlabels2id)
with gr.Blocks() as demo:
gr.Markdown("DDT: Decoupled Diffusion Transformer on ImageNet 512x512")
with gr.Row():
with gr.Column(scale=1):
num_steps = gr.Slider(minimum=1, maximum=100, step=1, label="num steps", value=50)
guidance = gr.Slider(minimum=0.1, maximum=10.0, step=0.1, label="CFG", value=4.0)
num_images = gr.Slider(minimum=1, maximum=10, step=1, label="num images", value=4)
label = gr.Dropdown(choices=classlabels, value=id2classlabels[950], label="label")
seed = gr.Slider(minimum=0, maximum=1000000, step=1, label="seed", value=0)
state_refresh_rate = gr.Slider(minimum=1, maximum=10, step=1, label="encoder reuse", value=1)
guidance_interval_min = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label="interval guidance min",
value=0.0)
guidance_interval_max = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, label="interval guidance max",
value=1.0)
timeshift = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, label="timeshift", value=1.0)
with gr.Column(scale=2):
btn = gr.Button("Generate")
output = gr.Gallery(label="Images")
btn.click(fn=pipeline,
inputs=[
label,
num_images,
seed,
num_steps,
guidance,
state_refresh_rate,
guidance_interval_min,
guidance_interval_max,
timeshift
], outputs=[output])
demo.launch()