File size: 7,556 Bytes
9e426da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
911c3a3
9e426da
52d009c
9e426da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7edbd1
9e426da
 
 
 
 
d7edbd1
323e5b5
9e426da
 
 
 
 
 
 
 
 
db75344
 
 
9e426da
d7edbd1
9e426da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db75344
9e426da
 
 
 
 
 
 
 
 
 
 
 
d7edbd1
 
 
 
 
 
 
 
 
9e426da
 
67d7248
9e426da
 
 
 
d7edbd1
0720c33
9e426da
 
d7edbd1
 
 
 
9e426da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7edbd1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
#   vae:
#     class_path: src.models.vae.LatentVAE
#     init_args:
#       precompute: true
#       weight_path: /mnt/bn/wangshuai6/models/sd-vae-ft-ema/
#   denoiser:
#     class_path: src.models.denoiser.decoupled_improved_dit.DDT
#     init_args:
#       in_channels: 4
#       patch_size: 2
#       num_groups: 16
#       hidden_size: &hidden_dim 1152
#       num_blocks: 28
#       num_encoder_blocks: 22
#       num_classes: 1000
#   conditioner:
#     class_path: src.models.conditioner.LabelConditioner
#     init_args:
#       null_class: 1000
#   diffusion_sampler:
#     class_path: src.diffusion.stateful_flow_matching.sampling.EulerSampler
#     init_args:
#       num_steps: 250
#       guidance: 3.0
#       state_refresh_rate: 1
#       guidance_interval_min: 0.3
#       guidance_interval_max: 1.0
#       timeshift: 1.0
#       last_step: 0.04
#       scheduler: *scheduler
#       w_scheduler: src.diffusion.stateful_flow_matching.scheduling.LinearScheduler
#       guidance_fn: src.diffusion.base.guidance.simple_guidance_fn
#       step_fn: src.diffusion.stateful_flow_matching.sampling.ode_step_fn
import os
import torch
import spaces
import argparse
from omegaconf import OmegaConf
from src.models.vae import fp2uint8
from src.diffusion.base.guidance import simple_guidance_fn
from src.diffusion.stateful_flow_matching.sharing_sampling import EulerSampler
from src.diffusion.stateful_flow_matching.scheduling import LinearScheduler
from PIL import Image
import gradio as gr
from huggingface_hub import snapshot_download


def instantiate_class(config):
    kwargs = config.get("init_args", {})
    class_module, class_name = config["class_path"].rsplit(".", 1)
    module = __import__(class_module, fromlist=[class_name])
    args_class = getattr(module, class_name)
    return args_class(**kwargs)

def load_model(weight_dict, denosier):
    prefix = "ema_denoiser."
    for k, v in denoiser.state_dict().items():
        try:
            v.copy_(weight_dict["state_dict"][prefix + k])
        except:
            print(f"Failed to copy {prefix + k} to denoiser weight")
    return denoiser


class Pipeline:
    def __init__(self, vae, denoiser, conditioner, diffusion_sampler, resolution, classlabels2ids):
        self.vae = vae
        self.denoiser = denoiser
        self.conditioner = conditioner
        self.diffusion_sampler = diffusion_sampler
        self.resolution = resolution
        self.classlabels2ids = classlabels2ids
    @spaces.GPU
    @torch.no_grad()
    @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
    def __call__(self, y, num_images, seed, num_steps, guidance, state_refresh_rate, guidance_interval_min, guidance_interval_max, timeshift):
        self.diffusion_sampler.num_steps = num_steps
        self.diffusion_sampler.guidance = guidance
        self.diffusion_sampler.state_refresh_rate = state_refresh_rate
        self.diffusion_sampler.guidance_interval_min = guidance_interval_min
        self.diffusion_sampler.guidance_interval_max = guidance_interval_max
        self.diffusion_sampler.timeshift = timeshift
        generator = torch.Generator(device="cpu").manual_seed(seed)
        xT = torch.randn((num_images, 4, self.resolution//8, self.resolution//8), device="cpu", dtype=torch.float32, generator=generator)
        xT = xT.to("cuda")
        with torch.no_grad():
            condition, uncondition = conditioner([self.classlabels2ids[y],]*num_images)
        # Sample images:
        samples = diffusion_sampler(denoiser, xT, condition, uncondition)
        samples = vae.decode(samples)
        # fp32 -1,1 -> uint8 0,255
        samples = fp2uint8(samples)
        samples = samples.permute(0, 2, 3, 1).cpu().numpy()
        images = []
        for i in range(num_images):
            image = Image.fromarray(samples[i])
            images.append(image)
        return images

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default="configs/repa_improved_ddt_xlen22de6_512.yaml")
    parser.add_argument("--resolution", type=int, default=512)
    parser.add_argument("--model_id", type=str, default="MCG-NJU/DDT-XL-22en6de-R512")
    parser.add_argument("--ckpt_path", type=str, default="models")
    args = parser.parse_args()

    if not os.path.exists(args.ckpt_path):
        snapshot_download(repo_id=args.model_id, local_dir=args.ckpt_path)

    config = OmegaConf.load(args.config)
    vae_config = config.model.vae
    diffusion_sampler_config = config.model.diffusion_sampler
    denoiser_config = config.model.denoiser
    conditioner_config = config.model.conditioner

    vae = instantiate_class(vae_config)
    denoiser = instantiate_class(denoiser_config)
    conditioner = instantiate_class(conditioner_config)


    diffusion_sampler = EulerSampler(
       scheduler=LinearScheduler(),
       w_scheduler=LinearScheduler(),
       guidance_fn=simple_guidance_fn,
       num_steps=50,
       guidance=4.0,
       state_refresh_rate=1,
       guidance_interval_min=0.3,
       guidance_interval_max=1.0,
       timeshift=1.0
    )
    ckpt_path = os.path.join(args.ckpt_path, "model.ckpt")
    ckpt = torch.load(ckpt_path, map_location="cpu")
    denoiser = load_model(ckpt, denoiser)
    denoiser = denoiser.cuda()
    vae = vae.cuda()
    denoiser.eval()

    # read imagenet classlabels
    with open("imagenet_classlabels.txt", "r") as f:
        classlabels = f.readlines()
        classlabels = [label.strip() for label in classlabels]

    classlabels2id = {label: i for i, label in enumerate(classlabels)}
    id2classlabels = {i: label for i, label in enumerate(classlabels)}

    pipeline = Pipeline(vae, denoiser, conditioner, diffusion_sampler, args.resolution, classlabels2id)

    with gr.Blocks() as demo:
        gr.Markdown("DDT: Decoupled Diffusion Transformer on ImageNet 512x512")
        with gr.Row():
            with gr.Column(scale=1):
                num_steps = gr.Slider(minimum=1, maximum=100, step=1, label="num steps", value=50)
                guidance = gr.Slider(minimum=0.1, maximum=10.0, step=0.1, label="CFG", value=4.0)
                num_images = gr.Slider(minimum=1, maximum=10, step=1, label="num images", value=4)
                label = gr.Dropdown(choices=classlabels, value=id2classlabels[950], label="label")
                seed = gr.Slider(minimum=0, maximum=1000000, step=1, label="seed", value=0)
                state_refresh_rate = gr.Slider(minimum=1, maximum=10, step=1, label="encoder reuse", value=1)
                guidance_interval_min = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label="interval guidance min",
                                                  value=0.0)
                guidance_interval_max = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, label="interval guidance max",
                                                  value=1.0)
                timeshift = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, label="timeshift", value=1.0)
            with gr.Column(scale=2):
                btn = gr.Button("Generate")
                output = gr.Gallery(label="Images")

        btn.click(fn=pipeline,
                  inputs=[
                      label,
                      num_images,
                      seed,
                      num_steps,
                      guidance,
                      state_refresh_rate,
                      guidance_interval_min,
                      guidance_interval_max,
                      timeshift
                  ], outputs=[output])
    demo.launch()