Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,556 Bytes
9e426da 911c3a3 9e426da 52d009c 9e426da d7edbd1 9e426da d7edbd1 323e5b5 9e426da db75344 9e426da d7edbd1 9e426da db75344 9e426da d7edbd1 9e426da 67d7248 9e426da d7edbd1 0720c33 9e426da d7edbd1 9e426da d7edbd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# vae:
# class_path: src.models.vae.LatentVAE
# init_args:
# precompute: true
# weight_path: /mnt/bn/wangshuai6/models/sd-vae-ft-ema/
# denoiser:
# class_path: src.models.denoiser.decoupled_improved_dit.DDT
# init_args:
# in_channels: 4
# patch_size: 2
# num_groups: 16
# hidden_size: &hidden_dim 1152
# num_blocks: 28
# num_encoder_blocks: 22
# num_classes: 1000
# conditioner:
# class_path: src.models.conditioner.LabelConditioner
# init_args:
# null_class: 1000
# diffusion_sampler:
# class_path: src.diffusion.stateful_flow_matching.sampling.EulerSampler
# init_args:
# num_steps: 250
# guidance: 3.0
# state_refresh_rate: 1
# guidance_interval_min: 0.3
# guidance_interval_max: 1.0
# timeshift: 1.0
# last_step: 0.04
# scheduler: *scheduler
# w_scheduler: src.diffusion.stateful_flow_matching.scheduling.LinearScheduler
# guidance_fn: src.diffusion.base.guidance.simple_guidance_fn
# step_fn: src.diffusion.stateful_flow_matching.sampling.ode_step_fn
import os
import torch
import spaces
import argparse
from omegaconf import OmegaConf
from src.models.vae import fp2uint8
from src.diffusion.base.guidance import simple_guidance_fn
from src.diffusion.stateful_flow_matching.sharing_sampling import EulerSampler
from src.diffusion.stateful_flow_matching.scheduling import LinearScheduler
from PIL import Image
import gradio as gr
from huggingface_hub import snapshot_download
def instantiate_class(config):
kwargs = config.get("init_args", {})
class_module, class_name = config["class_path"].rsplit(".", 1)
module = __import__(class_module, fromlist=[class_name])
args_class = getattr(module, class_name)
return args_class(**kwargs)
def load_model(weight_dict, denosier):
prefix = "ema_denoiser."
for k, v in denoiser.state_dict().items():
try:
v.copy_(weight_dict["state_dict"][prefix + k])
except:
print(f"Failed to copy {prefix + k} to denoiser weight")
return denoiser
class Pipeline:
def __init__(self, vae, denoiser, conditioner, diffusion_sampler, resolution, classlabels2ids):
self.vae = vae
self.denoiser = denoiser
self.conditioner = conditioner
self.diffusion_sampler = diffusion_sampler
self.resolution = resolution
self.classlabels2ids = classlabels2ids
@spaces.GPU
@torch.no_grad()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def __call__(self, y, num_images, seed, num_steps, guidance, state_refresh_rate, guidance_interval_min, guidance_interval_max, timeshift):
self.diffusion_sampler.num_steps = num_steps
self.diffusion_sampler.guidance = guidance
self.diffusion_sampler.state_refresh_rate = state_refresh_rate
self.diffusion_sampler.guidance_interval_min = guidance_interval_min
self.diffusion_sampler.guidance_interval_max = guidance_interval_max
self.diffusion_sampler.timeshift = timeshift
generator = torch.Generator(device="cpu").manual_seed(seed)
xT = torch.randn((num_images, 4, self.resolution//8, self.resolution//8), device="cpu", dtype=torch.float32, generator=generator)
xT = xT.to("cuda")
with torch.no_grad():
condition, uncondition = conditioner([self.classlabels2ids[y],]*num_images)
# Sample images:
samples = diffusion_sampler(denoiser, xT, condition, uncondition)
samples = vae.decode(samples)
# fp32 -1,1 -> uint8 0,255
samples = fp2uint8(samples)
samples = samples.permute(0, 2, 3, 1).cpu().numpy()
images = []
for i in range(num_images):
image = Image.fromarray(samples[i])
images.append(image)
return images
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="configs/repa_improved_ddt_xlen22de6_512.yaml")
parser.add_argument("--resolution", type=int, default=512)
parser.add_argument("--model_id", type=str, default="MCG-NJU/DDT-XL-22en6de-R512")
parser.add_argument("--ckpt_path", type=str, default="models")
args = parser.parse_args()
if not os.path.exists(args.ckpt_path):
snapshot_download(repo_id=args.model_id, local_dir=args.ckpt_path)
config = OmegaConf.load(args.config)
vae_config = config.model.vae
diffusion_sampler_config = config.model.diffusion_sampler
denoiser_config = config.model.denoiser
conditioner_config = config.model.conditioner
vae = instantiate_class(vae_config)
denoiser = instantiate_class(denoiser_config)
conditioner = instantiate_class(conditioner_config)
diffusion_sampler = EulerSampler(
scheduler=LinearScheduler(),
w_scheduler=LinearScheduler(),
guidance_fn=simple_guidance_fn,
num_steps=50,
guidance=4.0,
state_refresh_rate=1,
guidance_interval_min=0.3,
guidance_interval_max=1.0,
timeshift=1.0
)
ckpt_path = os.path.join(args.ckpt_path, "model.ckpt")
ckpt = torch.load(ckpt_path, map_location="cpu")
denoiser = load_model(ckpt, denoiser)
denoiser = denoiser.cuda()
vae = vae.cuda()
denoiser.eval()
# read imagenet classlabels
with open("imagenet_classlabels.txt", "r") as f:
classlabels = f.readlines()
classlabels = [label.strip() for label in classlabels]
classlabels2id = {label: i for i, label in enumerate(classlabels)}
id2classlabels = {i: label for i, label in enumerate(classlabels)}
pipeline = Pipeline(vae, denoiser, conditioner, diffusion_sampler, args.resolution, classlabels2id)
with gr.Blocks() as demo:
gr.Markdown("DDT: Decoupled Diffusion Transformer on ImageNet 512x512")
with gr.Row():
with gr.Column(scale=1):
num_steps = gr.Slider(minimum=1, maximum=100, step=1, label="num steps", value=50)
guidance = gr.Slider(minimum=0.1, maximum=10.0, step=0.1, label="CFG", value=4.0)
num_images = gr.Slider(minimum=1, maximum=10, step=1, label="num images", value=4)
label = gr.Dropdown(choices=classlabels, value=id2classlabels[950], label="label")
seed = gr.Slider(minimum=0, maximum=1000000, step=1, label="seed", value=0)
state_refresh_rate = gr.Slider(minimum=1, maximum=10, step=1, label="encoder reuse", value=1)
guidance_interval_min = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label="interval guidance min",
value=0.0)
guidance_interval_max = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, label="interval guidance max",
value=1.0)
timeshift = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, label="timeshift", value=1.0)
with gr.Column(scale=2):
btn = gr.Button("Generate")
output = gr.Gallery(label="Images")
btn.click(fn=pipeline,
inputs=[
label,
num_images,
seed,
num_steps,
guidance,
state_refresh_rate,
guidance_interval_min,
guidance_interval_max,
timeshift
], outputs=[output])
demo.launch() |