|
import streamlit as st |
|
from langchain.document_loaders import PyPDFLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.embeddings import TogetherEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.chains import RetrievalQA |
|
import time |
|
|
|
|
|
|
|
|
|
@st.cache_resource |
|
def get_chunks_and_embeddings(): |
|
pdf_loader = PyPDFLoader('test1.pdf') |
|
pages = pdf_loader.load_and_split(RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)) |
|
chunk_texts = [page.page_content for page in pages] |
|
|
|
embeddings_model = TogetherEmbeddings( |
|
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979" |
|
) |
|
return chunk_texts, embeddings_model |
|
|
|
|
|
chunk_texts, embeddings_model = get_chunks_and_embeddings() |
|
|
|
|
|
|
|
|
|
st.title("📄 Chat with your PDF (با پیدیاف خودت حرف بزن!)") |
|
st.subheader("در حال آمادهسازی امبدینگ چانکها...") |
|
|
|
progress_bar = st.progress(0) |
|
all_embeddings = [] |
|
batch_size = 128 |
|
|
|
for i in range(0, len(chunk_texts), batch_size): |
|
batch = chunk_texts[i:i+batch_size] |
|
embedded = embeddings_model.embed_documents(batch) |
|
all_embeddings.extend(embedded) |
|
|
|
progress_bar.progress(min((i + batch_size) / len(chunk_texts), 1.0)) |
|
|
|
st.success("✅ همه چانکها آماده شدند!") |
|
|
|
|
|
|
|
|
|
vectorstore = FAISS.from_embeddings(all_embeddings, chunk_texts) |
|
|
|
|
|
|
|
|
|
llm = ChatOpenAI( |
|
base_url="https://api.together.xyz/v1", |
|
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979', |
|
model="meta-llama/Llama-3-70B-Instruct-Turbo-Free" |
|
) |
|
|
|
chain = RetrievalQA.from_chain_type( |
|
llm=llm, |
|
chain_type='stuff', |
|
retriever=vectorstore.as_retriever(search_kwargs={"k": 10}), |
|
input_key='question' |
|
) |
|
|
|
|
|
|
|
|
|
if 'messages' not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
if 'pending_prompt' not in st.session_state: |
|
st.session_state.pending_prompt = None |
|
|
|
|
|
for msg in st.session_state.messages: |
|
with st.chat_message(msg['role']): |
|
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True) |
|
|
|
|
|
prompt = st.chat_input("چطور میتونم کمکت کنم؟") |
|
|
|
if prompt: |
|
st.session_state.messages.append({'role': 'user', 'content': prompt}) |
|
st.session_state.pending_prompt = prompt |
|
st.rerun() |
|
|
|
if st.session_state.pending_prompt: |
|
with st.chat_message('ai'): |
|
thinking = st.empty() |
|
thinking.markdown("🤖 در حال فکر کردن...") |
|
|
|
|
|
response = chain.run(f"فقط به زبان فارسی پاسخ بده. سوال: {st.session_state.pending_prompt}") |
|
answer = response.split("Helpful Answer:")[-1].strip() |
|
if not answer: |
|
answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم." |
|
|
|
thinking.empty() |
|
full_response = "" |
|
placeholder = st.empty() |
|
|
|
|
|
for word in answer.split(): |
|
full_response += word + " " |
|
placeholder.markdown(full_response + "▌") |
|
time.sleep(0.03) |
|
|
|
placeholder.markdown(full_response) |
|
st.session_state.messages.append({'role': 'ai', 'content': full_response}) |
|
st.session_state.pending_prompt = None |
|
|