File size: 5,724 Bytes
7a0f03d 9fe2e05 b448191 dc99e66 b448191 b51fe95 9ebd8d9 6564690 7a0f03d dc99e66 b448191 6997dfd dc99e66 b448191 6997dfd b448191 dc99e66 6997dfd dc99e66 b448191 dc99e66 b448191 fe85822 dc99e66 b448191 5054e30 b7b439e 5054e30 3652b60 5054e30 3652b60 5054e30 6997dfd 5054e30 6997dfd b7b439e 5054e30 f21cdf6 680827f dc99e66 9fe2e05 7a0f03d c9690b4 9fe2e05 7a0f03d dc99e66 9fe2e05 dc99e66 9fe2e05 c9690b4 dc99e66 9fe2e05 7a0f03d dc99e66 7a0f03d 9fe2e05 c9690b4 7a0f03d 9fe2e05 c9690b4 9fe2e05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import os
import time
import streamlit as st
from transformers import AutoTokenizer, AutoModel
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document as LangchainDocument
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from groq import Groq
import torch
from langchain_core.retrievers import BaseRetriever
# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="چتبات ارتش - فقط از PDF", page_icon="🪖", layout="wide")
# ----------------- بارگذاری مدل FarsiBERT -----------------
model_name = "HooshvareLab/bert-fa-zwnj-base" # مدل BERT فارسی
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
# ----------------- لود PDF و ساخت ایندکس -----------------
@st.cache_resource
def build_pdf_index():
with st.spinner('📄 در حال پردازش فایل PDF...'):
loader = PyPDFLoader("test1.pdf")
pages = loader.load()
# تکهتکه کردن متن PDF
splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50
)
texts = []
for page in pages:
texts.extend(splitter.split_text(page.page_content))
# تبدیل به Document
documents = [LangchainDocument(page_content=t) for t in texts]
# استفاده از FarsiBERT برای تولید امبدینگ
embeddings = []
for doc in documents:
inputs = tokenizer(doc.page_content, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
embeddings.append(outputs.last_hidden_state.mean(dim=1).numpy()) # میانگین امبدینگها
# به جای FAISS، فقط لیست امبدینگها را برمیگردانیم
return documents, embeddings
# ----------------- ساختن Index از PDF -----------------
# ----------------- تعریف LLM از Groq -----------------
groq_api_key = "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"
client = Groq(api_key=groq_api_key)
class GroqLLM(OpenAI):
def __init__(self, api_key, model_name):
super().__init__(openai_api_key=api_key, model_name=model_name, base_url="https://api.groq.com/openai/v1")
# مدل Groq را با API خود بارگذاری کنید
llm = GroqLLM(api_key=groq_api_key, model_name="deepseek-r1-distill-llama-70b")
# ----------------- ساخت SimpleRetriever -----------------
from langchain_core.retrievers import BaseRetriever
from langchain_core.documents import Document
from typing import List
from dataclasses import dataclass, field
@dataclass
class SimpleRetriever(BaseRetriever):
documents: List[Document] = field(default_factory=list)
embeddings: List = field(default_factory=list)
def __init__(self):
super().__init__()
self.documents, self.embeddings = build_pdf_index()
def _get_relevant_documents(self, query: str) -> List[Document]:
inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
query_embedding = outputs.last_hidden_state.mean(dim=1).numpy()
similarities = []
for doc_embedding in self.embeddings:
similarity = (query_embedding * doc_embedding).sum()
similarities.append(similarity)
ranked_docs = sorted(zip(similarities, self.documents), reverse=True)
return [doc for _, doc in ranked_docs[:5]]
documents, embeddings = build_pdf_index()
retriever = SimpleRetriever(documents=documents, embeddings=embeddings)
# بعد chain را بساز
chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
chain_type="stuff",
input_key="question"
)
# ----------------- استیت برای چت -----------------
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'pending_prompt' not in st.session_state:
st.session_state.pending_prompt = None
# ----------------- نمایش پیامهای قبلی -----------------
for msg in st.session_state.messages:
with st.chat_message(msg['role']):
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
# ----------------- ورودی چت -----------------
prompt = st.chat_input("سوالی در مورد فایل بپرس...")
if prompt:
st.session_state.messages.append({'role': 'user', 'content': prompt})
st.session_state.pending_prompt = prompt
st.rerun()
# ----------------- پاسخ مدل فقط از روی PDF -----------------
if st.session_state.pending_prompt:
with st.chat_message('ai'):
thinking = st.empty()
thinking.markdown("🤖 در حال فکر کردن از روی PDF...")
try:
# گرفتن جواب فقط از PDF
response = chain.run(f"سوال: {st.session_state.pending_prompt}")
answer = response.strip()
except Exception as e:
answer = f"خطا در پاسخدهی: {str(e)}"
thinking.empty()
# انیمیشن تایپ پاسخ
full_response = ""
placeholder = st.empty()
for word in answer.split():
full_response += word + " "
placeholder.markdown(full_response + "▌")
time.sleep(0.03)
placeholder.markdown(full_response)
st.session_state.messages.append({'role': 'ai', 'content': full_response})
st.session_state.pending_prompt = None
|