File size: 5,724 Bytes
7a0f03d
9fe2e05
 
b448191
dc99e66
 
 
 
 
b448191
b51fe95
9ebd8d9
6564690
7a0f03d
dc99e66
 
b448191
 
 
 
6997dfd
dc99e66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b448191
6997dfd
 
b448191
 
 
 
dc99e66
6997dfd
 
dc99e66
 
 
b448191
 
dc99e66
 
 
 
 
 
b448191
fe85822
dc99e66
b448191
5054e30
 
 
 
 
 
b7b439e
5054e30
 
 
3652b60
5054e30
3652b60
 
5054e30
 
 
 
 
6997dfd
 
 
5054e30
6997dfd
b7b439e
5054e30
 
f21cdf6
 
680827f
 
 
 
 
 
 
 
dc99e66
9fe2e05
 
 
 
 
 
7a0f03d
c9690b4
 
 
9fe2e05
7a0f03d
dc99e66
9fe2e05
 
 
 
 
 
dc99e66
9fe2e05
 
c9690b4
dc99e66
9fe2e05
7a0f03d
dc99e66
 
 
7a0f03d
 
 
9fe2e05
c9690b4
7a0f03d
 
9fe2e05
 
c9690b4
 
9fe2e05
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import time
import streamlit as st
from transformers import AutoTokenizer, AutoModel
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document as LangchainDocument
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
from groq import Groq
import torch
from langchain_core.retrievers import BaseRetriever

# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="چت‌بات ارتش - فقط از PDF", page_icon="🪖", layout="wide")

# ----------------- بارگذاری مدل FarsiBERT -----------------
model_name = "HooshvareLab/bert-fa-zwnj-base"  # مدل BERT فارسی
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)

# ----------------- لود PDF و ساخت ایندکس -----------------
@st.cache_resource
def build_pdf_index():
    with st.spinner('📄 در حال پردازش فایل PDF...'):
        loader = PyPDFLoader("test1.pdf")
        pages = loader.load()

        # تکه‌تکه کردن متن PDF
        splitter = RecursiveCharacterTextSplitter(
            chunk_size=500,
            chunk_overlap=50
        )

        texts = []
        for page in pages:
            texts.extend(splitter.split_text(page.page_content))

        # تبدیل به Document
        documents = [LangchainDocument(page_content=t) for t in texts]

        # استفاده از FarsiBERT برای تولید امبدینگ
        embeddings = []
        for doc in documents:
            inputs = tokenizer(doc.page_content, return_tensors="pt", padding=True, truncation=True)
            with torch.no_grad():
                outputs = model(**inputs)
            embeddings.append(outputs.last_hidden_state.mean(dim=1).numpy())  # میانگین امبدینگ‌ها

        # به جای FAISS، فقط لیست امبدینگ‌ها را برمی‌گردانیم
        return documents, embeddings

# ----------------- ساختن Index از PDF -----------------

# ----------------- تعریف LLM از Groq -----------------
groq_api_key = "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"
client = Groq(api_key=groq_api_key)

class GroqLLM(OpenAI):
    def __init__(self, api_key, model_name):
        super().__init__(openai_api_key=api_key, model_name=model_name, base_url="https://api.groq.com/openai/v1")

# مدل Groq را با API خود بارگذاری کنید
llm = GroqLLM(api_key=groq_api_key, model_name="deepseek-r1-distill-llama-70b")

# ----------------- ساخت SimpleRetriever -----------------
from langchain_core.retrievers import BaseRetriever
from langchain_core.documents import Document
from typing import List
from dataclasses import dataclass, field

@dataclass
class SimpleRetriever(BaseRetriever):
    documents: List[Document] = field(default_factory=list)
    embeddings: List = field(default_factory=list)

    def __init__(self):
        super().__init__()
        self.documents, self.embeddings = build_pdf_index()

    def _get_relevant_documents(self, query: str) -> List[Document]:
        inputs = tokenizer(query, return_tensors="pt", padding=True, truncation=True)
        with torch.no_grad():
            outputs = model(**inputs)
        query_embedding = outputs.last_hidden_state.mean(dim=1).numpy()

        similarities = []
        for doc_embedding in self.embeddings:
            similarity = (query_embedding * doc_embedding).sum()
            similarities.append(similarity)

        ranked_docs = sorted(zip(similarities, self.documents), reverse=True)
        return [doc for _, doc in ranked_docs[:5]]
documents, embeddings = build_pdf_index()
retriever = SimpleRetriever(documents=documents, embeddings=embeddings)

# بعد chain را بساز
chain = RetrievalQA.from_chain_type(
    llm=llm,
    retriever=retriever,
    chain_type="stuff",
    input_key="question"
)
# ----------------- استیت برای چت -----------------
if 'messages' not in st.session_state:
    st.session_state.messages = []

if 'pending_prompt' not in st.session_state:
    st.session_state.pending_prompt = None

# ----------------- نمایش پیام‌های قبلی -----------------
for msg in st.session_state.messages:
    with st.chat_message(msg['role']):
        st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)

# ----------------- ورودی چت -----------------
prompt = st.chat_input("سوالی در مورد فایل بپرس...")

if prompt:
    st.session_state.messages.append({'role': 'user', 'content': prompt})
    st.session_state.pending_prompt = prompt
    st.rerun()

# ----------------- پاسخ مدل فقط از روی PDF -----------------
if st.session_state.pending_prompt:
    with st.chat_message('ai'):
        thinking = st.empty()
        thinking.markdown("🤖 در حال فکر کردن از روی PDF...")

        try:
            # گرفتن جواب فقط از PDF
            response = chain.run(f"سوال: {st.session_state.pending_prompt}")
            answer = response.strip()

        except Exception as e:
            answer = f"خطا در پاسخ‌دهی: {str(e)}"

        thinking.empty()

        # انیمیشن تایپ پاسخ
        full_response = ""
        placeholder = st.empty()
        for word in answer.split():
            full_response += word + " "
            placeholder.markdown(full_response + "▌")
            time.sleep(0.03)

        placeholder.markdown(full_response)
        st.session_state.messages.append({'role': 'ai', 'content': full_response})
        st.session_state.pending_prompt = None