File size: 4,061 Bytes
7a0f03d 9fe2e05 7a0f03d dc99e66 6564690 7a0f03d dc99e66 9fe2e05 7a0f03d c9690b4 9fe2e05 7a0f03d dc99e66 9fe2e05 dc99e66 9fe2e05 c9690b4 dc99e66 9fe2e05 7a0f03d dc99e66 7a0f03d 9fe2e05 c9690b4 7a0f03d 9fe2e05 c9690b4 9fe2e05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import os
import time
import streamlit as st
from groq import Groq
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document as LangchainDocument
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="چتبات ارتش - فقط از PDF", page_icon="🪖", layout="wide")
# استایل فارسی و بکگراند (مثل قبل...)
# ----------------- تعریف کلید API -----------------
groq_api_key = "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"
# ----------------- لود PDF و ساخت ایندکس -----------------
@st.cache_resource
def build_pdf_index():
with st.spinner('📄 در حال پردازش فایل PDF...'):
loader = PyPDFLoader("test1.pdf")
pages = loader.load()
# تکهتکه کردن متن PDF
splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50
)
texts = []
for page in pages:
texts.extend(splitter.split_text(page.page_content))
# تبدیل به Document
documents = [LangchainDocument(page_content=t) for t in texts]
# استفاده از HuggingFaceEmbedding محلی برای FAISS
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vectordb = FAISS.from_documents(documents, embedding=embeddings)
return vectordb
# ----------------- ساختن Index از PDF -----------------
index = build_pdf_index()
# ----------------- تعریف LLM Groq -----------------
client = Groq(api_key=groq_api_key)
class GroqLLM(OpenAI):
def __init__(self, api_key, model_name):
super().__init__(openai_api_key=api_key, model_name=model_name, base_url="https://api.groq.com/openai/v1")
llm = GroqLLM(api_key=groq_api_key, model_name="llama3-70b-8192")
# ----------------- Retrieval Chain -----------------
chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=index.as_retriever(),
chain_type="stuff",
input_key="question"
)
# ----------------- استیت برای چت -----------------
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'pending_prompt' not in st.session_state:
st.session_state.pending_prompt = None
# ----------------- نمایش پیامهای قبلی -----------------
for msg in st.session_state.messages:
with st.chat_message(msg['role']):
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
# ----------------- ورودی چت -----------------
prompt = st.chat_input("سوالی در مورد فایل بپرس...")
if prompt:
st.session_state.messages.append({'role': 'user', 'content': prompt})
st.session_state.pending_prompt = prompt
st.rerun()
# ----------------- پاسخ مدل فقط از روی PDF -----------------
if st.session_state.pending_prompt:
with st.chat_message('ai'):
thinking = st.empty()
thinking.markdown("🤖 در حال فکر کردن از روی PDF...")
try:
# گرفتن جواب فقط از PDF
response = chain.run(f"سوال: {st.session_state.pending_prompt}")
answer = response.strip()
except Exception as e:
answer = f"خطا در پاسخدهی: {str(e)}"
thinking.empty()
# انیمیشن تایپ پاسخ
full_response = ""
placeholder = st.empty()
for word in answer.split():
full_response += word + " "
placeholder.markdown(full_response + "▌")
time.sleep(0.03)
placeholder.markdown(full_response)
st.session_state.messages.append({'role': 'ai', 'content': full_response})
st.session_state.pending_prompt = None
|