File size: 5,990 Bytes
0a148f3 9fe2e05 c9690b4 5c7945f c888a66 60897a5 830cc95 c9690b4 60897a5 9fe2e05 c888a66 60897a5 c888a66 60897a5 c888a66 60897a5 c888a66 60897a5 86f59d7 60897a5 c888a66 9fe2e05 c888a66 60897a5 c888a66 60897a5 c888a66 7b803ee c888a66 60897a5 f8d2d3e 60897a5 c888a66 60897a5 f8d2d3e 60897a5 c888a66 60897a5 f8d2d3e 60897a5 c888a66 60897a5 f8d2d3e 60897a5 c888a66 f8d2d3e c888a66 60897a5 c888a66 60897a5 c888a66 60897a5 c888a66 60897a5 9fe2e05 60897a5 c888a66 86f59d7 f8d2d3e c888a66 830cc95 c888a66 f8d2d3e 5c7945f f8d2d3e c888a66 9fe2e05 c9690b4 9fe2e05 c9690b4 a0f7add 4822955 a0f7add 9fe2e05 c9690b4 7ab91d0 9fe2e05 c9690b4 9fe2e05 c9690b4 9fe2e05 c9690b4 9fe2e05 c9690b4 9fe2e05 86e8c89 c9690b4 9fe2e05 c9690b4 9fe2e05 c9690b4 9fe2e05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import time
import streamlit as st
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.base import Embeddings
from langchain.vectorstores import FAISS
from langchain.indexes import VectorstoreIndexCreator
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from typing import List
from together import Together
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings
import streamlit as st
from PIL import Image
st.set_page_config(page_title="چت بات توانا", page_icon="🪖", layout="wide")
# استایل
st.markdown("""
<style>
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@400;700&display=swap');
html, body, [class*="css"] {
font-family: 'Vazirmatn', Tahoma, sans-serif;
direction: rtl;
text-align: right;
}
.stApp {
background: url("military_bg.jpeg") no-repeat center center fixed;
background-size: cover;
backdrop-filter: blur(2px);
}
.stChatMessage {
background-color: rgba(255,255,255,0.8);
border: 1px solid #4e8a3e;
border-radius: 12px;
padding: 16px;
margin-bottom: 15px;
box-shadow: 0 4px 10px rgba(0,0,0,0.2);
animation: fadeIn 0.4s ease-in-out;
}
.stTextInput > div > input, .stTextArea textarea {
background-color: rgba(255,255,255,0.9) !important;
border-radius: 8px !important;
direction: rtl;
text-align: right;
font-family: 'Vazirmatn', Tahoma;
}
.stButton>button {
background-color: #4e8a3e !important;
color: white !important;
font-weight: bold;
border-radius: 10px;
padding: 8px 20px;
transition: 0.3s;
}
.stButton>button:hover {
background-color: #3c6d30 !important;
}
.header-text {
text-align: center;
margin-top: 20px;
margin-bottom: 40px;
background-color: rgba(255, 255, 255, 0.75);
padding: 20px;
border-radius: 20px;
box-shadow: 0 4px 12px rgba(0,0,0,0.2);
}
.header-text h1 {
font-size: 42px;
color: #2c3e50;
margin: 0;
font-weight: bold;
}
.subtitle {
font-size: 18px;
color: #34495e;
margin-top: 8px;
}
@keyframes fadeIn {
from { opacity: 0; transform: translateY(10px); }
to { opacity: 1; transform: translateY(0); }
}
</style>
""", unsafe_allow_html=True)
# لوگو در وسط با columns
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
try:
image = Image.open("army.png")
st.image(image, width=240)
except FileNotFoundError:
st.error("📁 فایل 'army.png' پیدا نشد. مطمئن شو کنار فایل اصلی Streamlit هست.")
# تیتر
st.markdown("""
<div class="header-text">
<h1>چت بات توانا</h1>
<div class="subtitle">دستیار هوشمند برای تصمیمگیری در میدان نبرد</div>
</div>
""", unsafe_allow_html=True)
embeddings = OpenAIEmbeddings()
class TogetherEmbeddings(Embeddings):
def __init__(self, model_name: str, api_key: str):
self.model_name = model_name
self.client = Together(api_key=api_key)
def embed_documents(self, texts: List[str]) -> List[List[float]]:
response = self.client.embeddings.create(model=self.model_name, input=texts)
return [item.embedding for item in response.data]
def embed_query(self, text: str) -> List[float]:
return self.embed_documents([text])[0]
@st.cache_resource
def get_pdf_index():
with st.spinner('📄 در حال پردازش فایل PDF...'):
loader = [PyPDFLoader('test1.pdf')]
embeddings = HuggingFaceInstructEmbeddings(model_name="SajjadAyoubi/xlm-roberta-large-fa-qa")
return VectorstoreIndexCreator(
embedding=embeddings,
text_splitter=RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)
).from_loaders(loader)
index = get_pdf_index()
llm = ChatOpenAI(
base_url="https://api.together.xyz/v1",
api_key='0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979',
model="meta-llama/Llama-3.3-70B-Instruct-Turbo-Free"
)
chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type='stuff',
retriever=index.vectorstore.as_retriever(),
input_key='question'
)
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'pending_prompt' not in st.session_state:
st.session_state.pending_prompt = None
for msg in st.session_state.messages:
with st.chat_message(msg['role']):
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
prompt = st.chat_input("چطور میتونم کمک کنم؟")
if prompt:
st.session_state.messages.append({'role': 'user', 'content': prompt})
st.session_state.pending_prompt = prompt
st.rerun()
if st.session_state.pending_prompt:
with st.chat_message('ai'):
thinking = st.empty()
thinking.markdown("🤖 در حال فکر کردن...")
response = chain.run(f'question:پاسخ را فقط به زبان فارسی جواب بده {st.session_state.pending_prompt}')
answer = response.split("Helpful Answer:")[-1].strip()
if not answer:
answer = "متأسفم، اطلاعات دقیقی در این مورد ندارم."
thinking.empty()
full_response = ""
placeholder = st.empty()
for word in answer.split():
full_response += word + " "
placeholder.markdown(full_response + "▌")
time.sleep(0.03)
placeholder.markdown(full_response)
st.session_state.messages.append({'role': 'ai', 'content': full_response})
st.session_state.pending_prompt = None
|