Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ from langchain.chains import RetrievalQA
|
|
10 |
from langchain.chat_models import ChatOpenAI
|
11 |
from typing import List
|
12 |
from together import Together
|
13 |
-
|
14 |
|
15 |
import streamlit as st
|
16 |
from PIL import Image
|
@@ -129,14 +129,7 @@ class TogetherEmbeddings(Embeddings):
|
|
129 |
def get_pdf_index():
|
130 |
with st.spinner('📄 در حال پردازش فایل PDF...'):
|
131 |
loader = [PyPDFLoader('test1.pdf')]
|
132 |
-
embeddings =
|
133 |
-
model_name="togethercomputer/m2-bert-80M-8k-retrieval",
|
134 |
-
api_key="0291f33aee03412a47fa5d8e562e515182dcc5d9aac5a7fb5eefdd1759005979"
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
)
|
140 |
return VectorstoreIndexCreator(
|
141 |
embedding=embeddings,
|
142 |
text_splitter=RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)
|
|
|
10 |
from langchain.chat_models import ChatOpenAI
|
11 |
from typing import List
|
12 |
from together import Together
|
13 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
14 |
|
15 |
import streamlit as st
|
16 |
from PIL import Image
|
|
|
129 |
def get_pdf_index():
|
130 |
with st.spinner('📄 در حال پردازش فایل PDF...'):
|
131 |
loader = [PyPDFLoader('test1.pdf')]
|
132 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name="SajjadAyoubi/xlm-roberta-large-fa-qa")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
return VectorstoreIndexCreator(
|
134 |
embedding=embeddings,
|
135 |
text_splitter=RecursiveCharacterTextSplitter(chunk_size=300, chunk_overlap=0)
|