File size: 4,075 Bytes
7a0f03d 9fe2e05 7a0f03d dc99e66 6564690 7a0f03d dc99e66 fe85822 dc99e66 9fe2e05 7a0f03d c9690b4 9fe2e05 7a0f03d dc99e66 9fe2e05 dc99e66 9fe2e05 c9690b4 dc99e66 9fe2e05 7a0f03d dc99e66 7a0f03d 9fe2e05 c9690b4 7a0f03d 9fe2e05 c9690b4 9fe2e05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
import os
import time
import streamlit as st
from groq import Groq
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.schema import Document as LangchainDocument
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
# ----------------- تنظیمات صفحه -----------------
st.set_page_config(page_title="چتبات ارتش - فقط از PDF", page_icon="🪖", layout="wide")
# استایل فارسی و بکگراند (مثل قبل...)
# ----------------- تعریف کلید API -----------------
groq_api_key = "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"
# ----------------- لود PDF و ساخت ایندکس -----------------
@st.cache_resource
def build_pdf_index():
with st.spinner('📄 در حال پردازش فایل PDF...'):
loader = PyPDFLoader("test1.pdf")
pages = loader.load()
# تکهتکه کردن متن PDF
splitter = RecursiveCharacterTextSplitter(
chunk_size=500,
chunk_overlap=50
)
texts = []
for page in pages:
texts.extend(splitter.split_text(page.page_content))
# تبدیل به Document
documents = [LangchainDocument(page_content=t) for t in texts]
# استفاده از HuggingFaceEmbedding محلی برای FAISS
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
vectordb = FAISS.from_documents(documents, embedding=embeddings)
return vectordb
# ----------------- ساختن Index از PDF -----------------
index = build_pdf_index()
# ----------------- تعریف LLM Groq -----------------
client = Groq(api_key=groq_api_key)
class GroqLLM(OpenAI):
def __init__(self, api_key, model_name):
super().__init__(openai_api_key=api_key, model_name=model_name, base_url="https://api.groq.com/openai/v1")
llm = GroqLLM(api_key=groq_api_key, model_name="deepseek-r1-distill-llama-70b")
# ----------------- Retrieval Chain -----------------
chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=index.as_retriever(),
chain_type="stuff",
input_key="question"
)
# ----------------- استیت برای چت -----------------
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'pending_prompt' not in st.session_state:
st.session_state.pending_prompt = None
# ----------------- نمایش پیامهای قبلی -----------------
for msg in st.session_state.messages:
with st.chat_message(msg['role']):
st.markdown(f"🗨️ {msg['content']}", unsafe_allow_html=True)
# ----------------- ورودی چت -----------------
prompt = st.chat_input("سوالی در مورد فایل بپرس...")
if prompt:
st.session_state.messages.append({'role': 'user', 'content': prompt})
st.session_state.pending_prompt = prompt
st.rerun()
# ----------------- پاسخ مدل فقط از روی PDF -----------------
if st.session_state.pending_prompt:
with st.chat_message('ai'):
thinking = st.empty()
thinking.markdown("🤖 در حال فکر کردن از روی PDF...")
try:
# گرفتن جواب فقط از PDF
response = chain.run(f"سوال: {st.session_state.pending_prompt}")
answer = response.strip()
except Exception as e:
answer = f"خطا در پاسخدهی: {str(e)}"
thinking.empty()
# انیمیشن تایپ پاسخ
full_response = ""
placeholder = st.empty()
for word in answer.split():
full_response += word + " "
placeholder.markdown(full_response + "▌")
time.sleep(0.03)
placeholder.markdown(full_response)
st.session_state.messages.append({'role': 'ai', 'content': full_response})
st.session_state.pending_prompt = None
|