Ludovicollin commited on
Commit
ed9e96d
·
1 Parent(s): a964a99

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +13 -15
main.py CHANGED
@@ -29,7 +29,19 @@ import datetime
29
 
30
  os.environ["TOKENIZERS_PARALLELISM"] = os.environ["TOKENIZERS_PARALLELISM"]
31
  os.environ['ANTHROPIC_API_KEY'] = os.environ['ANTHROPIC_API_KEY']
32
-
 
 
 
 
 
 
 
 
 
 
 
 
33
  @cl.author_rename
34
  def rename(orig_author: str):
35
  rename_dict = {"ConversationalRetrievalChain": "💬 Assistant conversationnel", "Retriever": "Agent conversationnel", "StuffDocumentsChain": "Chaîne de documents", "LLMChain": "Agent", "ChatAnthropic": "🤖 IA"}
@@ -78,20 +90,6 @@ async def on_action(action):
78
  cl.Action(name="close_button", value="closed", label="Fermer", description="Fermer le volet d'information!")
79
  ]
80
  await cl.Message(author="🌐🌐🌐",content="Fermer le panneau d'information", actions=others).send()
81
-
82
- @cl.cache
83
- def retriever_to_cache():
84
- index_name = os.environ['PINECONE_INDEX_NAME']
85
- embeddings = HuggingFaceEmbeddings()
86
- pinecone.init(
87
- api_key=os.environ['PINECONE_API_KEY'],
88
- environment=os.environ['PINECONE_ENVIRONMENT']
89
- )
90
- vectorstore = Pinecone.from_existing_index(
91
- index_name=index_name, embedding=embeddings
92
- )
93
- retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 60,"filter": {'categorie': {'$eq': 'OF'}}})
94
- return retriever
95
 
96
  @cl.cache
97
  def to_cache(file):
 
29
 
30
  os.environ["TOKENIZERS_PARALLELISM"] = os.environ["TOKENIZERS_PARALLELISM"]
31
  os.environ['ANTHROPIC_API_KEY'] = os.environ['ANTHROPIC_API_KEY']
32
+ def retriever_to_cache():
33
+ index_name = os.environ['PINECONE_INDEX_NAME']
34
+ embeddings = HuggingFaceEmbeddings()
35
+ pinecone.init(
36
+ api_key=os.environ['PINECONE_API_KEY'],
37
+ environment=os.environ['PINECONE_ENVIRONMENT']
38
+ )
39
+ vectorstore = Pinecone.from_existing_index(
40
+ index_name=index_name, embedding=embeddings
41
+ )
42
+ retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 60,"filter": {'categorie': {'$eq': 'OF'}}})
43
+ return retriever
44
+
45
  @cl.author_rename
46
  def rename(orig_author: str):
47
  rename_dict = {"ConversationalRetrievalChain": "💬 Assistant conversationnel", "Retriever": "Agent conversationnel", "StuffDocumentsChain": "Chaîne de documents", "LLMChain": "Agent", "ChatAnthropic": "🤖 IA"}
 
90
  cl.Action(name="close_button", value="closed", label="Fermer", description="Fermer le volet d'information!")
91
  ]
92
  await cl.Message(author="🌐🌐🌐",content="Fermer le panneau d'information", actions=others).send()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
  @cl.cache
95
  def to_cache(file):