Ludovicollin commited on
Commit
a964a99
Β·
1 Parent(s): 5ccbefb

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +15 -11
main.py CHANGED
@@ -29,16 +29,6 @@ import datetime
29
 
30
  os.environ["TOKENIZERS_PARALLELISM"] = os.environ["TOKENIZERS_PARALLELISM"]
31
  os.environ['ANTHROPIC_API_KEY'] = os.environ['ANTHROPIC_API_KEY']
32
- index_name = os.environ['PINECONE_INDEX_NAME']
33
- embeddings = HuggingFaceEmbeddings()
34
- pinecone.init(
35
- api_key=os.environ['PINECONE_API_KEY'],
36
- environment=os.environ['PINECONE_ENVIRONMENT']
37
- )
38
- vectorstore = Pinecone.from_existing_index(
39
- index_name=index_name, embedding=embeddings
40
- )
41
- retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 60,"filter": {'categorie': {'$eq': 'OF'}}})
42
 
43
  @cl.author_rename
44
  def rename(orig_author: str):
@@ -89,6 +79,20 @@ async def on_action(action):
89
  ]
90
  await cl.Message(author="🌐🌐🌐",content="Fermer le panneau d'information", actions=others).send()
91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
  @cl.cache
93
  def to_cache(file):
94
  #time.sleep(5) # Simulate a time-consuming process
@@ -170,7 +174,7 @@ async def start():
170
  qa = ConversationalRetrievalChain.from_llm(
171
  streaming_llm,
172
  chain_type="stuff",
173
- retriever=retriever,
174
  #combine_docs_chain=doc_chain,
175
  #question_generator=question_generator,
176
  memory=memory,
 
29
 
30
  os.environ["TOKENIZERS_PARALLELISM"] = os.environ["TOKENIZERS_PARALLELISM"]
31
  os.environ['ANTHROPIC_API_KEY'] = os.environ['ANTHROPIC_API_KEY']
 
 
 
 
 
 
 
 
 
 
32
 
33
  @cl.author_rename
34
  def rename(orig_author: str):
 
79
  ]
80
  await cl.Message(author="🌐🌐🌐",content="Fermer le panneau d'information", actions=others).send()
81
 
82
+ @cl.cache
83
+ def retriever_to_cache():
84
+ index_name = os.environ['PINECONE_INDEX_NAME']
85
+ embeddings = HuggingFaceEmbeddings()
86
+ pinecone.init(
87
+ api_key=os.environ['PINECONE_API_KEY'],
88
+ environment=os.environ['PINECONE_ENVIRONMENT']
89
+ )
90
+ vectorstore = Pinecone.from_existing_index(
91
+ index_name=index_name, embedding=embeddings
92
+ )
93
+ retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 60,"filter": {'categorie': {'$eq': 'OF'}}})
94
+ return retriever
95
+
96
  @cl.cache
97
  def to_cache(file):
98
  #time.sleep(5) # Simulate a time-consuming process
 
174
  qa = ConversationalRetrievalChain.from_llm(
175
  streaming_llm,
176
  chain_type="stuff",
177
+ retriever=retriever_to_cache(),
178
  #combine_docs_chain=doc_chain,
179
  #question_generator=question_generator,
180
  memory=memory,