File size: 9,890 Bytes
2a7178c
 
 
 
 
 
 
 
 
 
 
 
1afcfd3
 
 
547460d
2a7178c
 
d94788c
 
 
 
 
 
 
2a7178c
 
 
 
 
 
8192ad9
 
61d1ad7
8192ad9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ccbefb
d94788c
ed9e96d
2a7178c
 
0b7237e
2a7178c
 
 
 
 
 
 
 
74631d0
2a7178c
 
 
 
74631d0
2a7178c
 
 
 
0b7237e
2a7178c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b7237e
2a7178c
0b7237e
a7da315
1afcfd3
 
9d8afbe
aa6ca59
9d8afbe
a7da315
1afcfd3
1fd02ed
 
a7da315
96b05a8
1fd02ed
2a7178c
 
 
 
 
 
 
 
 
 
 
 
1afcfd3
 
 
 
 
2a7178c
0b7237e
2a7178c
 
2c8b688
2a7178c
2c8b688
 
 
 
 
 
 
5ccbefb
2a7178c
6faecbe
 
 
 
 
 
 
d94788c
b8cb967
2a7178c
d94788c
2a7178c
f8af325
 
ba82520
f8af325
2a7178c
1009eb6
 
2a7178c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79832e2
2a7178c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b7237e
 
2a7178c
 
0b7237e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os
import time
from operator import itemgetter
from collections import Counter
from langchain.schema.runnable import Runnable, RunnablePassthrough, RunnableLambda
from langchain.schema.runnable.config import RunnableConfig
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.schema import StrOutputParser
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain_pinecone import PineconeVectorStore

from pinecone import Pinecone
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
import pandas as pd
import numpy as np
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_core.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    SystemMessagePromptTemplate,
)
from langchain_openai import ChatOpenAI
import chainlit as cl
from chainlit.input_widget import TextInput
from chainlit import user_session
from offres_emploi import Api
from offres_emploi.utils import dt_to_str_iso
import datetime
import bcrypt
import json

@cl.password_auth_callback
def auth_callback(username: str, password: str):
    auth = json.loads(os.environ['CHAINLIT_AUTH_LOGIN'])
    ident = next(d['ident'] for d in auth if d['ident'] == username)
    pwd = next(d['pwd'] for d in auth if d['ident'] == username)
    resultLogAdmin = bcrypt.checkpw(username.encode('utf-8'), bcrypt.hashpw(ident.encode('utf-8'), bcrypt.gensalt())) 
    resultPwdAdmin = bcrypt.checkpw(password.encode('utf-8'), bcrypt.hashpw(pwd.encode('utf-8'), bcrypt.gensalt())) 
    resultRole = next(d['role'] for d in auth if d['ident'] == username)
    if resultLogAdmin and resultPwdAdmin and resultRole == "admindatapcc":
        return cl.User(
            identifier=ident + " : 🧑‍💼 Admin Datapcc", metadata={"role": "admin", "provider": "credentials"}
        )
    elif resultLogAdmin and resultPwdAdmin and resultRole == "userdatapcc":
        return cl.User(
            identifier=ident + " : 🧑‍🎓 User Datapcc", metadata={"role": "user", "provider": "credentials"}
        )
        
os.environ["TOKENIZERS_PARALLELISM"] = os.environ["TOKENIZERS_PARALLELISM"]
os.environ['OPENAI_API_KEY'] = os.environ['OPENAI_API_KEY']

@cl.author_rename
def rename(orig_author: str):
    rename_dict = {"Datapccskillstream": "Datapcc", "ConversationalRetrievalChain": "Assistant conversationnel 💬", "Retriever": "Agent conversationnel", "StuffDocumentsChain": "Chaîne de documents", "LLMChain": "Agent", "ChatOpenAI": "IA🤖"}
    return rename_dict.get(orig_author, orig_author)

@cl.action_callback("download")
async def on_action(action):
    content = []
    content.append(action.value)
    arrayContent = np.array(content)
    df = pd.DataFrame(arrayContent)
    with open('./' + action.description + '.txt', 'wb') as csv_file:
        df.to_csv(path_or_buf=csv_file, index=False,header=False, encoding='utf-8')
    elements = [
        cl.File(
            name= action.description + ".txt",
            path="./" + action.description + ".txt",
            display="inline",
        ),
    ]
    await cl.Message(
        author="Datapcc 🌐🌐🌐", content="[Lien] 🔗", elements=elements
    ).send()
    await action.remove()
    
@cl.action_callback("close_button")
async def on_action(action):
    time.sleep(0.5)
    track = user_session.get("tracker")
    await track.remove()
        
@cl.action_callback("action_button")
async def on_action(action):
    task_list = cl.TaskList()
    # Create the TaskList
    # Create a task and put it in the running state
    task1 = cl.Task(title="Processing data Processing data Processing data Processing data Processing data Processing data Processing data Processing data Processing data Processing data Processing data Processing data Processing data Processing data Processing data Processing data Processing data Processing data Processing data Processing data Processing data \n\n Processing data", status=cl.TaskStatus.READY)
    await task_list.add_task(task1)
    task2 = cl.Task(title=action.value, status=cl.TaskStatus.READY)
    await task_list.add_task(task2)
    # Perform some action on your end
    await task_list.send()
    tracking = user_session.set("tracker", task_list)
    
    others = [
        cl.Action(name="close_button", value="closed", label="Fermer", description="Fermer le volet d'information!")
    ]
    await cl.Message(author="Datapcc 🌐🌐🌐",content="Fermer le panneau d'information", actions=others).send()

@cl.step(type="retrieval")
def retriever_to_cache():
    os.environ['PINECONE_API_KEY'] = os.environ['PINECONE_API_KEY']
    os.environ['PINECONE_ENVIRONMENT'] = "us-west4-gcp-free"
    index_name = os.environ['PINECONE_INDEX_NAME']
    time.sleep(5)
    embeddings = HuggingFaceEmbeddings()
    time.sleep(5)
    vectorstore = PineconeVectorStore(
        index_name=index_name, embedding=embeddings
    )
    time.sleep(10)
    retriever = vectorstore.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": .7, "k": 30,"filter": {'categorie': {'$eq': 'OF'}}})
    return retriever

@cl.set_chat_profiles
async def chat_profile():
    return [
        cl.ChatProfile(name="OF - Offre de formation",markdown_description="Requêter sur l'offre de formation - OF",icon="./public/favicon.png",),
    ]
@cl.on_chat_start
async def start():
    chat_profile = cl.user_session.get("chat_profile")
    chatProfile = chat_profile.split(' - ')
    
    if chatProfile[0] == 'OF':
        app_user = cl.user_session.get("user")
        welcomeUser = app_user.identifier
        welcomeUserArray = welcomeUser.split('@')
        welcomeUserStr = welcomeUserArray[0].replace('.',' ')
        await cl.Message(f"> Bonjour {welcomeUserStr}").send()
        await cl.Message(
            author="Datapcc 🌐🌐🌐",content=f"✨ Commencez à poser vos questions sur les données \"{chat_profile}\"\n- Création de BCC à partir d'une liste de savoirs ou d'objectifs pédagogiques\n- Création du tableau de la version n°1 de la maquette de formation"
        ).send()
    
        from langchain_core.prompts.prompt import PromptTemplate

        _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.

                    Chat History:
                    {chat_history}
                    Follow Up Input: {question}
                    Standalone question:"""
        CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
        
        ########## Chain with streaming ##########
        message_history = ChatMessageHistory()
        memory = ConversationBufferMemory(
            memory_key="chat_history",
            output_key="answer",
            chat_memory=message_history,
            return_messages=True,
        )
        streaming_llm = ChatOpenAI(
            model_name = "gpt-4-1106-preview",
            streaming=True,
            temperature=1
        )
        qa = ConversationalRetrievalChain.from_llm(
            streaming_llm,
            memory=memory,
            chain_type="stuff",
            return_source_documents=True,
            verbose=False,
            retriever=retriever_to_cache()
        )
        cl.user_session.set("conversation_chain", qa)
    
@cl.on_message
async def main(message: cl.Message):
    chat_profile = cl.user_session.get("chat_profile")
    chatProfile = chat_profile.split(' - ')
    if chatProfile[0] == "OF":
        chain = cl.user_session.get("conversation_chain")
        cb = cl.AsyncLangchainCallbackHandler()
        res = await chain.acall("Contexte : Réponds à la question suivante de la manière la plus pertinente, la plus exhaustive et la plus détaillée possible, avec au minimum 3000 tokens jusqu'à 4000 tokens, seulement et strictement dans le contexte et les informations fournies. Question : " + message.content, callbacks=[cb])
        answer = res["answer"]
        source_documents = res["source_documents"]
    
        text_elements = []
        metadatas = ''
        if source_documents:
            for source_idx, source_doc in enumerate(source_documents):
                numSource = source_idx + 1
                source_name = f"Source n°{numSource}"
                text_elements.append(
                    cl.Text(content="Formations : " + source_doc.metadata['ABREGE_LIBELLES'] + " " + source_doc.metadata['INTITULE'] + "\n\nROME : " + source_doc.metadata['CODES_ROME'] + "\nLibellés ROME : " + source_doc.metadata['LIBELLES_ROME'] + "\n\nActivités : " + source_doc.metadata['ACTIVITES_VISEES'].replace('œ','oe') + "\n\nEmplois accessibles : " + source_doc.metadata['TYPE_EMPLOI_ACCESSIBLES'] + "\n\nCompétences : " + source_doc.metadata['CAPACITES_ATTESTEES'].replace('œ','oe').replace('…','oe'), name=source_name)
                )
            source_names = [text_el.name for countMetadata, text_el in enumerate(text_elements) if countMetadata < 10]
            if source_names:
                metadatas += ', '.join(source_names)
            else:
                metadatas += "\n\nPas de source trouvée!"

        actions = [
            cl.Action(name="download", value="Question : " + message.content + "\n\nRéponse : " + answer, description="download_offre_formation")
        ]

        await cl.Message(author="Datapcc 🌐🌐🌐",content=answer).send()
        await cl.Message(author="Datapcc 🌐🌐🌐",content="Download", actions=actions).send()
    
        if metadatas:
            await cl.Message(author="Datapcc 🌐🌐🌐",content="Sources : " + metadatas, elements=text_elements).send()