Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,21 @@
|
|
1 |
from peft import PeftModel
|
2 |
-
from transformers import
|
3 |
-
AutoModelForCausalLM,
|
4 |
-
AutoTokenizer,
|
5 |
-
GenerationConfig,
|
6 |
-
TextIteratorStreamer
|
7 |
-
)
|
8 |
-
import torch
|
9 |
import gradio as gr
|
10 |
-
from threading import Thread
|
11 |
|
12 |
-
# Загрузка
|
13 |
base_model = AutoModelForCausalLM.from_pretrained(
|
14 |
"Qwen/Qwen2.5-0.5B-Instruct",
|
15 |
-
device_map="auto"
|
16 |
-
torch_dtype=torch.float16,
|
17 |
-
low_cpu_mem_usage=True
|
18 |
)
|
19 |
-
|
20 |
-
# Объединение основной модели с адаптерами
|
21 |
model = PeftModel.from_pretrained(base_model, "Locon213/ThinkLite")
|
22 |
-
model = model.merge_and_unload()
|
23 |
-
|
24 |
-
# Применяем оптимизации для CPU
|
25 |
-
model = torch.quantization.quantize_dynamic(
|
26 |
-
model,
|
27 |
-
{torch.nn.Linear},
|
28 |
-
dtype=torch.qint8
|
29 |
-
)
|
30 |
-
model.config.use_cache = True
|
31 |
-
|
32 |
-
# Загрузка токенизатора
|
33 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
34 |
|
35 |
-
# Конфигурация генерации
|
36 |
generation_config = GenerationConfig(
|
37 |
temperature=0.7,
|
38 |
top_p=0.9,
|
39 |
top_k=50,
|
40 |
-
max_new_tokens=
|
41 |
repetition_penalty=1.1,
|
42 |
do_sample=True
|
43 |
)
|
@@ -49,57 +27,35 @@ def format_prompt(message, history):
|
|
49 |
prompt += f"<<<USER>>> {message}\n<<<ASSISTANT>>>"
|
50 |
return prompt
|
51 |
|
52 |
-
def
|
|
|
53 |
formatted_prompt = format_prompt(message, history)
|
54 |
-
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
|
55 |
-
|
56 |
-
streamer = TextIteratorStreamer(
|
57 |
-
tokenizer,
|
58 |
-
skip_prompt=True,
|
59 |
-
skip_special_tokens=True,
|
60 |
-
timeout=30
|
61 |
-
)
|
62 |
|
63 |
-
|
|
|
|
|
64 |
**inputs,
|
65 |
generation_config=generation_config,
|
66 |
-
streamer=streamer,
|
67 |
pad_token_id=tokenizer.eos_token_id
|
68 |
)
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
partial_message = ""
|
74 |
-
for new_token in streamer:
|
75 |
-
partial_message += new_token
|
76 |
-
yield partial_message
|
77 |
-
|
78 |
-
# Создание интерфейса с оптимизированным дизайном
|
79 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
80 |
-
gr.Markdown("# ThinkLite Chat (Optimized)")
|
81 |
-
gr.Markdown("🚀 Версия с потоковым выводом и оптимизацией для CPU")
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
yield chat_history
|
98 |
-
|
99 |
-
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
100 |
-
bot, chatbot, chatbot
|
101 |
-
)
|
102 |
-
clear_btn.click(lambda: [], None, chatbot, queue=False)
|
103 |
|
104 |
if __name__ == "__main__":
|
105 |
-
|
|
|
1 |
from peft import PeftModel
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
+
# Загрузка модели и токенизатора
|
6 |
base_model = AutoModelForCausalLM.from_pretrained(
|
7 |
"Qwen/Qwen2.5-0.5B-Instruct",
|
8 |
+
device_map="auto"
|
|
|
|
|
9 |
)
|
|
|
|
|
10 |
model = PeftModel.from_pretrained(base_model, "Locon213/ThinkLite")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
12 |
|
13 |
+
# Конфигурация генерации
|
14 |
generation_config = GenerationConfig(
|
15 |
temperature=0.7,
|
16 |
top_p=0.9,
|
17 |
top_k=50,
|
18 |
+
max_new_tokens=512,
|
19 |
repetition_penalty=1.1,
|
20 |
do_sample=True
|
21 |
)
|
|
|
27 |
prompt += f"<<<USER>>> {message}\n<<<ASSISTANT>>>"
|
28 |
return prompt
|
29 |
|
30 |
+
def generate_response(message, history):
|
31 |
+
# Форматируем промпт с историей чата
|
32 |
formatted_prompt = format_prompt(message, history)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# Токенизация и генерация
|
35 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
|
36 |
+
outputs = model.generate(
|
37 |
**inputs,
|
38 |
generation_config=generation_config,
|
|
|
39 |
pad_token_id=tokenizer.eos_token_id
|
40 |
)
|
41 |
|
42 |
+
# Декодирование и извлечение ответа
|
43 |
+
response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
return response.strip()
|
46 |
+
|
47 |
+
# Создание чат-интерфейса
|
48 |
+
chat_interface = gr.ChatInterface(
|
49 |
+
fn=generate_response,
|
50 |
+
examples=[
|
51 |
+
"Объясни квантовую запутанность простыми словами",
|
52 |
+
"Как научиться программировать?",
|
53 |
+
"Напиши стихотворение про ИИ"
|
54 |
+
],
|
55 |
+
title="ThinkLite Chat",
|
56 |
+
description="Общайтесь с ThinkLite - адаптированной версией Qwen2.5-0.5B-Instruct",
|
57 |
+
theme="soft"
|
58 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
if __name__ == "__main__":
|
61 |
+
chat_interface.launch()
|