Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,43 @@
|
|
1 |
from peft import PeftModel
|
2 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
-
# Загрузка модели
|
6 |
base_model = AutoModelForCausalLM.from_pretrained(
|
7 |
"Qwen/Qwen2.5-0.5B-Instruct",
|
8 |
-
device_map="auto"
|
|
|
|
|
9 |
)
|
|
|
|
|
10 |
model = PeftModel.from_pretrained(base_model, "Locon213/ThinkLite")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
12 |
|
13 |
-
# Конфигурация генерации
|
14 |
generation_config = GenerationConfig(
|
15 |
temperature=0.7,
|
16 |
top_p=0.9,
|
17 |
top_k=50,
|
18 |
-
max_new_tokens=
|
19 |
repetition_penalty=1.1,
|
20 |
do_sample=True
|
21 |
)
|
@@ -27,35 +49,57 @@ def format_prompt(message, history):
|
|
27 |
prompt += f"<<<USER>>> {message}\n<<<ASSISTANT>>>"
|
28 |
return prompt
|
29 |
|
30 |
-
def
|
31 |
-
# Форматируем промпт с историей чата
|
32 |
formatted_prompt = format_prompt(message, history)
|
33 |
-
|
34 |
-
# Токенизация и генерация
|
35 |
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
**inputs,
|
38 |
generation_config=generation_config,
|
|
|
39 |
pad_token_id=tokenizer.eos_token_id
|
40 |
)
|
41 |
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
if __name__ == "__main__":
|
61 |
-
|
|
|
1 |
from peft import PeftModel
|
2 |
+
from transformers import (
|
3 |
+
AutoModelForCausalLM,
|
4 |
+
AutoTokenizer,
|
5 |
+
GenerationConfig,
|
6 |
+
TextIteratorStreamer
|
7 |
+
)
|
8 |
+
import torch
|
9 |
import gradio as gr
|
10 |
+
from threading import Thread
|
11 |
|
12 |
+
# Загрузка и объединение модели с адаптерами
|
13 |
base_model = AutoModelForCausalLM.from_pretrained(
|
14 |
"Qwen/Qwen2.5-0.5B-Instruct",
|
15 |
+
device_map="auto",
|
16 |
+
torch_dtype=torch.float16,
|
17 |
+
low_cpu_mem_usage=True
|
18 |
)
|
19 |
+
|
20 |
+
# Объединение основной модели с адаптерами
|
21 |
model = PeftModel.from_pretrained(base_model, "Locon213/ThinkLite")
|
22 |
+
model = model.merge_and_unload()
|
23 |
+
|
24 |
+
# Применяем оптимизации для CPU
|
25 |
+
model = torch.quantization.quantize_dynamic(
|
26 |
+
model,
|
27 |
+
{torch.nn.Linear},
|
28 |
+
dtype=torch.qint8
|
29 |
+
)
|
30 |
+
model.config.use_cache = True
|
31 |
+
|
32 |
+
# Загрузка токенизатора
|
33 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
34 |
|
35 |
+
# Конфигурация генерации с оптимизированными параметрами
|
36 |
generation_config = GenerationConfig(
|
37 |
temperature=0.7,
|
38 |
top_p=0.9,
|
39 |
top_k=50,
|
40 |
+
max_new_tokens=256, # Уменьшено для экономии памяти
|
41 |
repetition_penalty=1.1,
|
42 |
do_sample=True
|
43 |
)
|
|
|
49 |
prompt += f"<<<USER>>> {message}\n<<<ASSISTANT>>>"
|
50 |
return prompt
|
51 |
|
52 |
+
def generate_stream(message, history):
|
|
|
53 |
formatted_prompt = format_prompt(message, history)
|
|
|
|
|
54 |
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)
|
55 |
+
|
56 |
+
streamer = TextIteratorStreamer(
|
57 |
+
tokenizer,
|
58 |
+
skip_prompt=True,
|
59 |
+
skip_special_tokens=True,
|
60 |
+
timeout=30
|
61 |
+
)
|
62 |
+
|
63 |
+
generation_kwargs = dict(
|
64 |
**inputs,
|
65 |
generation_config=generation_config,
|
66 |
+
streamer=streamer,
|
67 |
pad_token_id=tokenizer.eos_token_id
|
68 |
)
|
69 |
|
70 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
71 |
+
thread.start()
|
72 |
|
73 |
+
partial_message = ""
|
74 |
+
for new_token in streamer:
|
75 |
+
partial_message += new_token
|
76 |
+
yield partial_message
|
77 |
+
|
78 |
+
# Создание интерфейса с оптимизированным дизайном
|
79 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
80 |
+
gr.Markdown("# ThinkLite Chat (Optimized)")
|
81 |
+
gr.Markdown("🚀 Версия с потоковым выводом и оптимизацией для CPU")
|
82 |
+
|
83 |
+
chatbot = gr.Chatbot(height=400)
|
84 |
+
msg = gr.Textbox(label="Ваше сообщение")
|
85 |
+
clear_btn = gr.Button("Очистить историю")
|
86 |
+
|
87 |
+
def user(message, chat_history):
|
88 |
+
return "", chat_history + [[message, None]]
|
89 |
+
|
90 |
+
def bot(chat_history):
|
91 |
+
message = chat_history[-1][0]
|
92 |
+
history = chat_history[:-1]
|
93 |
+
|
94 |
+
chat_history[-1][1] = ""
|
95 |
+
for response in generate_stream(message, history):
|
96 |
+
chat_history[-1][1] = response
|
97 |
+
yield chat_history
|
98 |
+
|
99 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
100 |
+
bot, chatbot, chatbot
|
101 |
+
)
|
102 |
+
clear_btn.click(lambda: [], None, chatbot, queue=False)
|
103 |
|
104 |
if __name__ == "__main__":
|
105 |
+
demo.queue(max_size=10).launch(debug=False)
|