Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import torch | |
from diffusers import StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline, StableDiffusionControlNetImg2ImgPipeline | |
from peft import PeftModel, LoraConfig | |
import os | |
from PIL import Image | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model_default = "stable-diffusion-v1-5/stable-diffusion-v1-5" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
# Инициализация ControlNet | |
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose", torch_dtype=torch_dtype) | |
def get_lora_sd_pipeline( | |
lora_dir='./lora_man_animestyle', | |
base_model_name_or_path=None, | |
dtype=torch.float16, | |
adapter_name="default" | |
): | |
unet_sub_dir = os.path.join(lora_dir, "unet") | |
text_encoder_sub_dir = os.path.join(lora_dir, "text_encoder") | |
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None: | |
config = LoraConfig.from_pretrained(text_encoder_sub_dir) | |
base_model_name_or_path = config.base_model_name_or_path | |
if base_model_name_or_path is None: | |
raise ValueError("Укажите название базовой модели или путь к ней") | |
pipe = StableDiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype) | |
before_params = pipe.unet.parameters() | |
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name) | |
pipe.unet.set_adapter(adapter_name) | |
after_params = pipe.unet.parameters() | |
if os.path.exists(text_encoder_sub_dir): | |
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name) | |
if dtype in (torch.float16, torch.bfloat16): | |
pipe.unet.half() | |
pipe.text_encoder.half() | |
return pipe | |
def long_prompt_encoder(prompt, tokenizer, text_encoder, max_length=77): | |
tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"] | |
part_s = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)] | |
with torch.no_grad(): | |
embeds = [text_encoder(part.to(text_encoder.device))[0] for part in part_s] | |
return torch.cat(embeds, dim=1) | |
def align_embeddings(prompt_embeds, negative_prompt_embeds): | |
max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1]) | |
return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \ | |
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1])) | |
def preprocess_image(image, target_width, target_height): # Преобразует изображение в формат, подходящий для модели. | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
image = image.resize((target_width, target_height), Image.LANCZOS) | |
image = np.array(image).astype(np.float32) / 255.0 # Нормализация [0, 1] | |
image = image[None].transpose(0, 3, 1, 2) # Преобразуем в (batch, channels, height, width) | |
image = torch.from_numpy(image).to(device) | |
return image | |
pipe_default = get_lora_sd_pipeline(lora_dir='./lora_man_animestyle', base_model_name_or_path=model_default, dtype=torch_dtype).to(device) | |
#pipe_controlnet = StableDiffusionControlNetPipeline.from_pretrained( | |
pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
model_default, | |
controlnet=controlnet, | |
torch_dtype=torch_dtype | |
).to(device) | |
def infer( | |
prompt, | |
negative_prompt, | |
width=512, | |
height=512, | |
num_inference_steps=20, | |
model='stable-diffusion-v1-5/stable-diffusion-v1-5', | |
seed=4, | |
guidance_scale=7.5, | |
lora_scale=0.5, | |
strength_cn=0.5, # Коэфф. зашумления ControlNet | |
use_control_net=False, # Параметр для включения ControlNet | |
control_strength=0.5, # Сила влияния ControlNet | |
cn_source_image=None, # Исходное изображение ControlNet | |
control_image=None, # Контрольное изображение ControlNet | |
strength_ip=0.5, # Коэфф. зашумления IP_adapter | |
use_ip_adapter=False, # Параметр для включения IP_adapter | |
ip_adapter_strength=0.5,# Сила влияния IP_adapter | |
ip_source_image=None, # Исходное изображение IP_adapter | |
ip_adapter_image=None, # Контрольное изображение IP_adapter | |
progress=gr.Progress(track_tqdm=True) | |
): | |
generator = torch.Generator(device).manual_seed(seed) | |
# Генерация с IP_adapter | |
if use_ip_adapter and ip_source_image is not None and ip_adapter_image is not None: | |
# pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
# model_default, | |
# controlnet=controlnet, | |
# torch_dtype=torch_dtype | |
# ).to(device) | |
# Преобразуем изображения | |
ip_source_image = preprocess_image(ip_source_image, width, height) | |
ip_adapter_image = preprocess_image(ip_adapter_image, width, height) | |
# Создаём пайплайн IP_adapter с LoRA, если он ещё не создан ??????????????????????????????????????????????????????????????? | |
if not hasattr(pipe_controlnet, 'lora_loaded') or not pipe_controlnet.lora_loaded: | |
# Загружаем LoRA для UNet | |
pipe_controlnet.unet = PeftModel.from_pretrained( | |
pipe_controlnet.unet, | |
'./lora_man_animestyle/unet', | |
adapter_name="default" | |
) | |
pipe_controlnet.unet.set_adapter("default") | |
# Загружаем LoRA для Text Encoder, если она существует | |
text_encoder_lora_path = './lora_man_animestyle/text_encoder' | |
if os.path.exists(text_encoder_lora_path): | |
pipe_controlnet.text_encoder = PeftModel.from_pretrained( | |
pipe_controlnet.text_encoder, | |
text_encoder_lora_path, | |
adapter_name="default" | |
) | |
pipe_controlnet.text_encoder.set_adapter("default") | |
# Объединяем LoRA с основной моделью | |
pipe_controlnet.fuse_lora(lora_scale=lora_scale) | |
pipe_controlnet.lora_loaded = True # Помечаем, что LoRA загружена | |
# Убедимся, что ip_adapter_strength имеет тип float | |
ip_adapter_strength = float(ip_adapter_strength) | |
#strength_ip = float(strength_ip) | |
# Используем IP_adapter с LoRA ???????????????????????????????????????????????????????????????????????? | |
pipe = pipe_controlnet | |
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder) | |
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder) | |
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds) | |
image = pipe_controlnet( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
image=ip_source_image, | |
control_image=ip_adapter_image, | |
strength=strength_ip, # Коэфф. зашумления, чем больше, тем больше меняется результирующее изображение относитенльно исходного | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
controlnet_conditioning_scale=ip_adapter_strength, # ??????????????????????????????????????????????????????????????? | |
generator=generator | |
).images[0] | |
else: | |
# Генерация с ControlNet | |
if use_control_net and control_image is not None and cn_source_image is not None: | |
# pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained( | |
# model_default, | |
# controlnet=controlnet, | |
# torch_dtype=torch_dtype | |
# ).to(device) | |
# Преобразуем изображения | |
cn_source_image = preprocess_image(cn_source_image, width, height) | |
control_image = preprocess_image(control_image, width, height) | |
# Создаём пайплайн ControlNet с LoRA, если он ещё не создан | |
if not hasattr(pipe_controlnet, 'lora_loaded') or not pipe_controlnet.lora_loaded: | |
# Загружаем LoRA для UNet | |
pipe_controlnet.unet = PeftModel.from_pretrained( | |
pipe_controlnet.unet, | |
'./lora_man_animestyle/unet', | |
adapter_name="default" | |
) | |
pipe_controlnet.unet.set_adapter("default") | |
# Загружаем LoRA для Text Encoder, если она существует | |
text_encoder_lora_path = './lora_man_animestyle/text_encoder' | |
if os.path.exists(text_encoder_lora_path): | |
pipe_controlnet.text_encoder = PeftModel.from_pretrained( | |
pipe_controlnet.text_encoder, | |
text_encoder_lora_path, | |
adapter_name="default" | |
) | |
pipe_controlnet.text_encoder.set_adapter("default") | |
# Объединяем LoRA с основной моделью | |
pipe_controlnet.fuse_lora(lora_scale=lora_scale) | |
pipe_controlnet.lora_loaded = True # Помечаем, что LoRA загружена | |
# Убедимся, что control_strength имеет тип float | |
control_strength = float(control_strength) | |
#strength_sn = float(strength_sn) | |
# Используем ControlNet с LoRA | |
pipe = pipe_controlnet | |
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder) | |
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder) | |
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds) | |
image = pipe_controlnet( | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
image=cn_source_image, | |
control_image=control_image, | |
strength=strength_cn, # Коэфф. зашумления, чем больше, тем больше меняется результирующее изображение относитенльно исходного | |
width=width, | |
height=height, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
controlnet_conditioning_scale=control_strength, | |
generator=generator | |
).images[0] | |
else: | |
# Генерация без ControlNet и IP_adapter | |
if model != model_default: | |
pipe = StableDiffusionPipeline.from_pretrained(model, torch_dtype=torch_dtype).to(device) | |
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder) | |
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder) | |
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds) | |
else: | |
pipe = pipe_default | |
prompt_embeds = long_prompt_encoder(prompt, pipe.tokenizer, pipe.text_encoder) | |
negative_prompt_embeds = long_prompt_encoder(negative_prompt, pipe.tokenizer, pipe.text_encoder) | |
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds) | |
pipe.fuse_lora(lora_scale=lora_scale) | |
params = { | |
'prompt_embeds': prompt_embeds, | |
'negative_prompt_embeds': negative_prompt_embeds, | |
'guidance_scale': guidance_scale, | |
'num_inference_steps': num_inference_steps, | |
'width': width, | |
'height': height, | |
'generator': generator, | |
} | |
image = pipe(**params).images[0] | |
return image | |
examples = [ | |
"A young man in anime style. The image is characterized by high definition and resolution. Handsome, thoughtful man, attentive eyes. The man is depicted in the foreground, close-up or in the middle. High-quality images of the face, eyes, nose, lips, hands and clothes. The background and background are blurred and indistinct. The play of light and shadow is visible on the face and clothes.", | |
"A man runs through the park against the background of trees. The man's entire figure, face, arms and legs are visible. Anime style. The best quality.", | |
] | |
examples_negative = [ | |
"Blurred details, low resolution, no face visible, poor image of a man's face, poor quality, artifacts, black and white image.", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
available_models = [ | |
"stable-diffusion-v1-5/stable-diffusion-v1-5", | |
"CompVis/stable-diffusion-v1-4", | |
] | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(" # Text-to-Image Gradio Template from V. Gorsky") | |
with gr.Row(): | |
model = gr.Dropdown( | |
label="Model Selection", | |
choices=available_models, | |
value="stable-diffusion-v1-5/stable-diffusion-v1-5", | |
interactive=True | |
) | |
prompt = gr.Textbox( | |
label="Prompt", | |
max_lines=1, | |
placeholder="Enter your prompt", | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
) | |
with gr.Row(): | |
lora_scale = gr.Slider( | |
label="LoRA scale", | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
value=0.5, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=7.5, | |
) | |
with gr.Row(): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=4, | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=30, | |
) | |
with gr.Accordion("Advanced Settings", open=False): | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
with gr.Row(): | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
# ControlNet --------------------------------------------------------------------------------- | |
with gr.Blocks(): | |
with gr.Row(): | |
use_control_net = gr.Checkbox( | |
label="Use ControlNet", | |
value=False, | |
) | |
with gr.Column(visible=False) as control_net_options: | |
strength_cn = gr.Slider( | |
label="Strength", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.5, | |
step=0.05, | |
) | |
control_strength = gr.Slider( | |
label="Control Strength", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.5, | |
step=0.05, | |
) | |
control_mode = gr.Dropdown( | |
label="Control Mode", | |
choices=[ | |
"pose_estimation", | |
], | |
value="pose_estimation", | |
) | |
cn_source_image = gr.Image(label="Upload Source Image") | |
control_image = gr.Image(label="Upload Control Net Image") | |
use_control_net.change( | |
fn=lambda x: gr.Row.update(visible=x), | |
inputs=use_control_net, | |
outputs=control_net_options | |
) | |
# IP_adapter --------------------------------------------------------------------------------- | |
with gr.Blocks(): | |
with gr.Row(): | |
use_ip_adapter = gr.Checkbox( | |
label="Use IP_adapter", | |
value=False, | |
) | |
with gr.Column(visible=False) as ip_adapter_options: | |
strength_ip = gr.Slider( | |
label="Strength", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.5, | |
step=0.05, | |
) | |
ip_adapter_strength = gr.Slider( | |
label="IP_adapter Strength", | |
minimum=0.0, | |
maximum=1.0, | |
value=0.5, | |
step=0.05, | |
) | |
ip_source_image = gr.Image(label="Upload Source Image") | |
ip_adapter_image = gr.Image(label="Upload IP_adapter Image") | |
use_ip_adapter.change( | |
fn=lambda x: gr.Row.update(visible=x), | |
inputs=use_ip_adapter, | |
outputs=ip_adapter_options | |
) | |
# -------------------------------------------------------------------------------------- | |
gr.Examples(examples=examples, inputs=[prompt]) | |
gr.Examples(examples=examples_negative, inputs=[negative_prompt]) | |
run_button = gr.Button("Run", scale=1, variant="primary") | |
result = gr.Image(label="Result", show_label=False) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
width, | |
height, | |
num_inference_steps, | |
model, | |
seed, | |
guidance_scale, | |
lora_scale, | |
strength_cn, # Коэфф. зашумления ControlNet | |
use_control_net, # Чекбокс для ControlNet | |
control_strength, # Контроль силы ControlNet | |
cn_source_image, # Исходное изображение ControlNet | |
control_image, # Контрольное изображение ControlNet | |
strength_ip, # Коэфф. зашумления IP_adapter | |
use_ip_adapter, # Параметр для включения IP_adapter | |
ip_adapter_strength,# Сила влияния IP_adapter | |
ip_source_image, # Исходное изображение IP_adapter | |
ip_adapter_image, # Контрольное изображение IP_adapter | |
], | |
outputs=[result], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |