JiantaoLin
new
10bcbc8

A newer version of the Gradio SDK is available: 5.28.0

Upgrade

LTX

LTX Video is the first DiT-based video generation model capable of generating high-quality videos in real-time. It produces 24 FPS videos at a 768x512 resolution faster than they can be watched. Trained on a large-scale dataset of diverse videos, the model generates high-resolution videos with realistic and varied content. We provide a model for both text-to-video as well as image + text-to-video usecases.

Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.

Loading Single Files

Loading the original LTX Video checkpoints is also possible with [~ModelMixin.from_single_file].

import torch
from diffusers import AutoencoderKLLTXVideo, LTXImageToVideoPipeline, LTXVideoTransformer3DModel

single_file_url = "https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.safetensors"
transformer = LTXVideoTransformer3DModel.from_single_file(single_file_url, torch_dtype=torch.bfloat16)
vae = AutoencoderKLLTXVideo.from_single_file(single_file_url, torch_dtype=torch.bfloat16)
pipe = LTXImageToVideoPipeline.from_pretrained("Lightricks/LTX-Video", transformer=transformer, vae=vae, torch_dtype=torch.bfloat16)

# ... inference code ...

Alternatively, the pipeline can be used to load the weights with [~FromSingleFileMixin.from_single_file`].

import torch
from diffusers import LTXImageToVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer

single_file_url = "https://huggingface.co/Lightricks/LTX-Video/ltx-video-2b-v0.9.safetensors"
text_encoder = T5EncoderModel.from_pretrained("Lightricks/LTX-Video", subfolder="text_encoder", torch_dtype=torch.bfloat16)
tokenizer = T5Tokenizer.from_pretrained("Lightricks/LTX-Video", subfolder="tokenizer", torch_dtype=torch.bfloat16)
pipe = LTXImageToVideoPipeline.from_single_file(single_file_url, text_encoder=text_encoder, tokenizer=tokenizer, torch_dtype=torch.bfloat16)

LTXPipeline

[[autodoc]] LTXPipeline

  • all
  • call

LTXImageToVideoPipeline

[[autodoc]] LTXImageToVideoPipeline

  • all
  • call

LTXPipelineOutput

[[autodoc]] pipelines.ltx.pipeline_output.LTXPipelineOutput