Delete sam2
#1
by
LPX55
- opened
- sam2/__init__.py +0 -9
- sam2/automatic_mask_generator.py +0 -434
- sam2/build_sam.py +0 -89
- sam2/csrc/connected_components.cu +0 -289
- sam2/modeling/__init__.py +0 -5
- sam2/modeling/backbones/__init__.py +0 -5
- sam2/modeling/backbones/hieradet.py +0 -295
- sam2/modeling/backbones/image_encoder.py +0 -133
- sam2/modeling/backbones/utils.py +0 -95
- sam2/modeling/memory_attention.py +0 -169
- sam2/modeling/memory_encoder.py +0 -181
- sam2/modeling/position_encoding.py +0 -216
- sam2/modeling/sam/__init__.py +0 -5
- sam2/modeling/sam/mask_decoder.py +0 -295
- sam2/modeling/sam/prompt_encoder.py +0 -182
- sam2/modeling/sam/transformer.py +0 -329
- sam2/modeling/sam2_base.py +0 -829
- sam2/modeling/sam2_utils.py +0 -149
- sam2/sam2_image_predictor.py +0 -446
- sam2/sam2_video_predictor.py +0 -898
- sam2/utils/__init__.py +0 -5
- sam2/utils/amg.py +0 -348
- sam2/utils/misc.py +0 -238
- sam2/utils/transforms.py +0 -99
sam2/__init__.py
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
from hydra import initialize_config_module
|
8 |
-
|
9 |
-
initialize_config_module("sam2_configs", version_base="1.2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/automatic_mask_generator.py
DELETED
@@ -1,434 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
# Adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py
|
8 |
-
from typing import Any, Dict, List, Optional, Tuple
|
9 |
-
|
10 |
-
import numpy as np
|
11 |
-
import torch
|
12 |
-
from torchvision.ops.boxes import batched_nms, box_area # type: ignore
|
13 |
-
|
14 |
-
from sam2.modeling.sam2_base import SAM2Base
|
15 |
-
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
16 |
-
from sam2.utils.amg import (
|
17 |
-
area_from_rle,
|
18 |
-
batch_iterator,
|
19 |
-
batched_mask_to_box,
|
20 |
-
box_xyxy_to_xywh,
|
21 |
-
build_all_layer_point_grids,
|
22 |
-
calculate_stability_score,
|
23 |
-
coco_encode_rle,
|
24 |
-
generate_crop_boxes,
|
25 |
-
is_box_near_crop_edge,
|
26 |
-
mask_to_rle_pytorch,
|
27 |
-
MaskData,
|
28 |
-
remove_small_regions,
|
29 |
-
rle_to_mask,
|
30 |
-
uncrop_boxes_xyxy,
|
31 |
-
uncrop_masks,
|
32 |
-
uncrop_points,
|
33 |
-
)
|
34 |
-
|
35 |
-
|
36 |
-
class SAM2AutomaticMaskGenerator:
|
37 |
-
def __init__(
|
38 |
-
self,
|
39 |
-
model: SAM2Base,
|
40 |
-
points_per_side: Optional[int] = 32,
|
41 |
-
points_per_batch: int = 64,
|
42 |
-
pred_iou_thresh: float = 0.8,
|
43 |
-
stability_score_thresh: float = 0.95,
|
44 |
-
stability_score_offset: float = 1.0,
|
45 |
-
mask_threshold: float = 0.0,
|
46 |
-
box_nms_thresh: float = 0.7,
|
47 |
-
crop_n_layers: int = 0,
|
48 |
-
crop_nms_thresh: float = 0.7,
|
49 |
-
crop_overlap_ratio: float = 512 / 1500,
|
50 |
-
crop_n_points_downscale_factor: int = 1,
|
51 |
-
point_grids: Optional[List[np.ndarray]] = None,
|
52 |
-
min_mask_region_area: int = 0,
|
53 |
-
output_mode: str = "binary_mask",
|
54 |
-
use_m2m: bool = False,
|
55 |
-
multimask_output: bool = True,
|
56 |
-
) -> None:
|
57 |
-
"""
|
58 |
-
Using a SAM 2 model, generates masks for the entire image.
|
59 |
-
Generates a grid of point prompts over the image, then filters
|
60 |
-
low quality and duplicate masks. The default settings are chosen
|
61 |
-
for SAM 2 with a HieraL backbone.
|
62 |
-
|
63 |
-
Arguments:
|
64 |
-
model (Sam): The SAM 2 model to use for mask prediction.
|
65 |
-
points_per_side (int or None): The number of points to be sampled
|
66 |
-
along one side of the image. The total number of points is
|
67 |
-
points_per_side**2. If None, 'point_grids' must provide explicit
|
68 |
-
point sampling.
|
69 |
-
points_per_batch (int): Sets the number of points run simultaneously
|
70 |
-
by the model. Higher numbers may be faster but use more GPU memory.
|
71 |
-
pred_iou_thresh (float): A filtering threshold in [0,1], using the
|
72 |
-
model's predicted mask quality.
|
73 |
-
stability_score_thresh (float): A filtering threshold in [0,1], using
|
74 |
-
the stability of the mask under changes to the cutoff used to binarize
|
75 |
-
the model's mask predictions.
|
76 |
-
stability_score_offset (float): The amount to shift the cutoff when
|
77 |
-
calculated the stability score.
|
78 |
-
mask_threshold (float): Threshold for binarizing the mask logits
|
79 |
-
box_nms_thresh (float): The box IoU cutoff used by non-maximal
|
80 |
-
suppression to filter duplicate masks.
|
81 |
-
crop_n_layers (int): If >0, mask prediction will be run again on
|
82 |
-
crops of the image. Sets the number of layers to run, where each
|
83 |
-
layer has 2**i_layer number of image crops.
|
84 |
-
crop_nms_thresh (float): The box IoU cutoff used by non-maximal
|
85 |
-
suppression to filter duplicate masks between different crops.
|
86 |
-
crop_overlap_ratio (float): Sets the degree to which crops overlap.
|
87 |
-
In the first crop layer, crops will overlap by this fraction of
|
88 |
-
the image length. Later layers with more crops scale down this overlap.
|
89 |
-
crop_n_points_downscale_factor (int): The number of points-per-side
|
90 |
-
sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
|
91 |
-
point_grids (list(np.ndarray) or None): A list over explicit grids
|
92 |
-
of points used for sampling, normalized to [0,1]. The nth grid in the
|
93 |
-
list is used in the nth crop layer. Exclusive with points_per_side.
|
94 |
-
min_mask_region_area (int): If >0, postprocessing will be applied
|
95 |
-
to remove disconnected regions and holes in masks with area smaller
|
96 |
-
than min_mask_region_area. Requires opencv.
|
97 |
-
output_mode (str): The form masks are returned in. Can be 'binary_mask',
|
98 |
-
'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
|
99 |
-
For large resolutions, 'binary_mask' may consume large amounts of
|
100 |
-
memory.
|
101 |
-
use_m2m (bool): Whether to add a one step refinement using previous mask predictions.
|
102 |
-
multimask_output (bool): Whether to output multimask at each point of the grid.
|
103 |
-
"""
|
104 |
-
|
105 |
-
assert (points_per_side is None) != (
|
106 |
-
point_grids is None
|
107 |
-
), "Exactly one of points_per_side or point_grid must be provided."
|
108 |
-
if points_per_side is not None:
|
109 |
-
self.point_grids = build_all_layer_point_grids(
|
110 |
-
points_per_side,
|
111 |
-
crop_n_layers,
|
112 |
-
crop_n_points_downscale_factor,
|
113 |
-
)
|
114 |
-
elif point_grids is not None:
|
115 |
-
self.point_grids = point_grids
|
116 |
-
else:
|
117 |
-
raise ValueError("Can't have both points_per_side and point_grid be None.")
|
118 |
-
|
119 |
-
assert output_mode in [
|
120 |
-
"binary_mask",
|
121 |
-
"uncompressed_rle",
|
122 |
-
"coco_rle",
|
123 |
-
], f"Unknown output_mode {output_mode}."
|
124 |
-
if output_mode == "coco_rle":
|
125 |
-
try:
|
126 |
-
from pycocotools import mask as mask_utils # type: ignore # noqa: F401
|
127 |
-
except ImportError as e:
|
128 |
-
print("Please install pycocotools")
|
129 |
-
raise e
|
130 |
-
|
131 |
-
self.predictor = SAM2ImagePredictor(
|
132 |
-
model,
|
133 |
-
max_hole_area=min_mask_region_area,
|
134 |
-
max_sprinkle_area=min_mask_region_area,
|
135 |
-
)
|
136 |
-
self.points_per_batch = points_per_batch
|
137 |
-
self.pred_iou_thresh = pred_iou_thresh
|
138 |
-
self.stability_score_thresh = stability_score_thresh
|
139 |
-
self.stability_score_offset = stability_score_offset
|
140 |
-
self.mask_threshold = mask_threshold
|
141 |
-
self.box_nms_thresh = box_nms_thresh
|
142 |
-
self.crop_n_layers = crop_n_layers
|
143 |
-
self.crop_nms_thresh = crop_nms_thresh
|
144 |
-
self.crop_overlap_ratio = crop_overlap_ratio
|
145 |
-
self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
|
146 |
-
self.min_mask_region_area = min_mask_region_area
|
147 |
-
self.output_mode = output_mode
|
148 |
-
self.use_m2m = use_m2m
|
149 |
-
self.multimask_output = multimask_output
|
150 |
-
|
151 |
-
@torch.no_grad()
|
152 |
-
def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
|
153 |
-
"""
|
154 |
-
Generates masks for the given image.
|
155 |
-
|
156 |
-
Arguments:
|
157 |
-
image (np.ndarray): The image to generate masks for, in HWC uint8 format.
|
158 |
-
|
159 |
-
Returns:
|
160 |
-
list(dict(str, any)): A list over records for masks. Each record is
|
161 |
-
a dict containing the following keys:
|
162 |
-
segmentation (dict(str, any) or np.ndarray): The mask. If
|
163 |
-
output_mode='binary_mask', is an array of shape HW. Otherwise,
|
164 |
-
is a dictionary containing the RLE.
|
165 |
-
bbox (list(float)): The box around the mask, in XYWH format.
|
166 |
-
area (int): The area in pixels of the mask.
|
167 |
-
predicted_iou (float): The model's own prediction of the mask's
|
168 |
-
quality. This is filtered by the pred_iou_thresh parameter.
|
169 |
-
point_coords (list(list(float))): The point coordinates input
|
170 |
-
to the model to generate this mask.
|
171 |
-
stability_score (float): A measure of the mask's quality. This
|
172 |
-
is filtered on using the stability_score_thresh parameter.
|
173 |
-
crop_box (list(float)): The crop of the image used to generate
|
174 |
-
the mask, given in XYWH format.
|
175 |
-
"""
|
176 |
-
|
177 |
-
# Generate masks
|
178 |
-
mask_data = self._generate_masks(image)
|
179 |
-
|
180 |
-
# Encode masks
|
181 |
-
if self.output_mode == "coco_rle":
|
182 |
-
mask_data["segmentations"] = [
|
183 |
-
coco_encode_rle(rle) for rle in mask_data["rles"]
|
184 |
-
]
|
185 |
-
elif self.output_mode == "binary_mask":
|
186 |
-
mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
|
187 |
-
else:
|
188 |
-
mask_data["segmentations"] = mask_data["rles"]
|
189 |
-
|
190 |
-
# Write mask records
|
191 |
-
curr_anns = []
|
192 |
-
for idx in range(len(mask_data["segmentations"])):
|
193 |
-
ann = {
|
194 |
-
"segmentation": mask_data["segmentations"][idx],
|
195 |
-
"area": area_from_rle(mask_data["rles"][idx]),
|
196 |
-
"bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
|
197 |
-
"predicted_iou": mask_data["iou_preds"][idx].item(),
|
198 |
-
"point_coords": [mask_data["points"][idx].tolist()],
|
199 |
-
"stability_score": mask_data["stability_score"][idx].item(),
|
200 |
-
"crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
|
201 |
-
}
|
202 |
-
curr_anns.append(ann)
|
203 |
-
|
204 |
-
return curr_anns
|
205 |
-
|
206 |
-
def _generate_masks(self, image: np.ndarray) -> MaskData:
|
207 |
-
orig_size = image.shape[:2]
|
208 |
-
crop_boxes, layer_idxs = generate_crop_boxes(
|
209 |
-
orig_size, self.crop_n_layers, self.crop_overlap_ratio
|
210 |
-
)
|
211 |
-
|
212 |
-
# Iterate over image crops
|
213 |
-
data = MaskData()
|
214 |
-
for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
|
215 |
-
crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
|
216 |
-
data.cat(crop_data)
|
217 |
-
|
218 |
-
# Remove duplicate masks between crops
|
219 |
-
if len(crop_boxes) > 1:
|
220 |
-
# Prefer masks from smaller crops
|
221 |
-
scores = 1 / box_area(data["crop_boxes"])
|
222 |
-
scores = scores.to(data["boxes"].device)
|
223 |
-
keep_by_nms = batched_nms(
|
224 |
-
data["boxes"].float(),
|
225 |
-
scores,
|
226 |
-
torch.zeros_like(data["boxes"][:, 0]), # categories
|
227 |
-
iou_threshold=self.crop_nms_thresh,
|
228 |
-
)
|
229 |
-
data.filter(keep_by_nms)
|
230 |
-
data.to_numpy()
|
231 |
-
return data
|
232 |
-
|
233 |
-
def _process_crop(
|
234 |
-
self,
|
235 |
-
image: np.ndarray,
|
236 |
-
crop_box: List[int],
|
237 |
-
crop_layer_idx: int,
|
238 |
-
orig_size: Tuple[int, ...],
|
239 |
-
) -> MaskData:
|
240 |
-
# Crop the image and calculate embeddings
|
241 |
-
x0, y0, x1, y1 = crop_box
|
242 |
-
cropped_im = image[y0:y1, x0:x1, :]
|
243 |
-
cropped_im_size = cropped_im.shape[:2]
|
244 |
-
self.predictor.set_image(cropped_im)
|
245 |
-
|
246 |
-
# Get points for this crop
|
247 |
-
points_scale = np.array(cropped_im_size)[None, ::-1]
|
248 |
-
points_for_image = self.point_grids[crop_layer_idx] * points_scale
|
249 |
-
|
250 |
-
# Generate masks for this crop in batches
|
251 |
-
data = MaskData()
|
252 |
-
for (points,) in batch_iterator(self.points_per_batch, points_for_image):
|
253 |
-
batch_data = self._process_batch(
|
254 |
-
points, cropped_im_size, crop_box, orig_size, normalize=True
|
255 |
-
)
|
256 |
-
data.cat(batch_data)
|
257 |
-
del batch_data
|
258 |
-
self.predictor.reset_predictor()
|
259 |
-
|
260 |
-
# Remove duplicates within this crop.
|
261 |
-
keep_by_nms = batched_nms(
|
262 |
-
data["boxes"].float(),
|
263 |
-
data["iou_preds"],
|
264 |
-
torch.zeros_like(data["boxes"][:, 0]), # categories
|
265 |
-
iou_threshold=self.box_nms_thresh,
|
266 |
-
)
|
267 |
-
data.filter(keep_by_nms)
|
268 |
-
|
269 |
-
# Return to the original image frame
|
270 |
-
data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
|
271 |
-
data["points"] = uncrop_points(data["points"], crop_box)
|
272 |
-
data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
|
273 |
-
|
274 |
-
return data
|
275 |
-
|
276 |
-
def _process_batch(
|
277 |
-
self,
|
278 |
-
points: np.ndarray,
|
279 |
-
im_size: Tuple[int, ...],
|
280 |
-
crop_box: List[int],
|
281 |
-
orig_size: Tuple[int, ...],
|
282 |
-
normalize=False,
|
283 |
-
) -> MaskData:
|
284 |
-
orig_h, orig_w = orig_size
|
285 |
-
|
286 |
-
# Run model on this batch
|
287 |
-
points = torch.as_tensor(points, device=self.predictor.device)
|
288 |
-
in_points = self.predictor._transforms.transform_coords(
|
289 |
-
points, normalize=normalize, orig_hw=im_size
|
290 |
-
)
|
291 |
-
in_labels = torch.ones(
|
292 |
-
in_points.shape[0], dtype=torch.int, device=in_points.device
|
293 |
-
)
|
294 |
-
masks, iou_preds, low_res_masks = self.predictor._predict(
|
295 |
-
in_points[:, None, :],
|
296 |
-
in_labels[:, None],
|
297 |
-
multimask_output=self.multimask_output,
|
298 |
-
return_logits=True,
|
299 |
-
)
|
300 |
-
|
301 |
-
# Serialize predictions and store in MaskData
|
302 |
-
data = MaskData(
|
303 |
-
masks=masks.flatten(0, 1),
|
304 |
-
iou_preds=iou_preds.flatten(0, 1),
|
305 |
-
points=points.repeat_interleave(masks.shape[1], dim=0),
|
306 |
-
low_res_masks=low_res_masks.flatten(0, 1),
|
307 |
-
)
|
308 |
-
del masks
|
309 |
-
|
310 |
-
if not self.use_m2m:
|
311 |
-
# Filter by predicted IoU
|
312 |
-
if self.pred_iou_thresh > 0.0:
|
313 |
-
keep_mask = data["iou_preds"] > self.pred_iou_thresh
|
314 |
-
data.filter(keep_mask)
|
315 |
-
|
316 |
-
# Calculate and filter by stability score
|
317 |
-
data["stability_score"] = calculate_stability_score(
|
318 |
-
data["masks"], self.mask_threshold, self.stability_score_offset
|
319 |
-
)
|
320 |
-
if self.stability_score_thresh > 0.0:
|
321 |
-
keep_mask = data["stability_score"] >= self.stability_score_thresh
|
322 |
-
data.filter(keep_mask)
|
323 |
-
else:
|
324 |
-
# One step refinement using previous mask predictions
|
325 |
-
in_points = self.predictor._transforms.transform_coords(
|
326 |
-
data["points"], normalize=normalize, orig_hw=im_size
|
327 |
-
)
|
328 |
-
labels = torch.ones(
|
329 |
-
in_points.shape[0], dtype=torch.int, device=in_points.device
|
330 |
-
)
|
331 |
-
masks, ious = self.refine_with_m2m(
|
332 |
-
in_points, labels, data["low_res_masks"], self.points_per_batch
|
333 |
-
)
|
334 |
-
data["masks"] = masks.squeeze(1)
|
335 |
-
data["iou_preds"] = ious.squeeze(1)
|
336 |
-
|
337 |
-
if self.pred_iou_thresh > 0.0:
|
338 |
-
keep_mask = data["iou_preds"] > self.pred_iou_thresh
|
339 |
-
data.filter(keep_mask)
|
340 |
-
|
341 |
-
data["stability_score"] = calculate_stability_score(
|
342 |
-
data["masks"], self.mask_threshold, self.stability_score_offset
|
343 |
-
)
|
344 |
-
if self.stability_score_thresh > 0.0:
|
345 |
-
keep_mask = data["stability_score"] >= self.stability_score_thresh
|
346 |
-
data.filter(keep_mask)
|
347 |
-
|
348 |
-
# Threshold masks and calculate boxes
|
349 |
-
data["masks"] = data["masks"] > self.mask_threshold
|
350 |
-
data["boxes"] = batched_mask_to_box(data["masks"])
|
351 |
-
|
352 |
-
# Filter boxes that touch crop boundaries
|
353 |
-
keep_mask = ~is_box_near_crop_edge(
|
354 |
-
data["boxes"], crop_box, [0, 0, orig_w, orig_h]
|
355 |
-
)
|
356 |
-
if not torch.all(keep_mask):
|
357 |
-
data.filter(keep_mask)
|
358 |
-
|
359 |
-
# Compress to RLE
|
360 |
-
data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
|
361 |
-
data["rles"] = mask_to_rle_pytorch(data["masks"])
|
362 |
-
del data["masks"]
|
363 |
-
|
364 |
-
return data
|
365 |
-
|
366 |
-
@staticmethod
|
367 |
-
def postprocess_small_regions(
|
368 |
-
mask_data: MaskData, min_area: int, nms_thresh: float
|
369 |
-
) -> MaskData:
|
370 |
-
"""
|
371 |
-
Removes small disconnected regions and holes in masks, then reruns
|
372 |
-
box NMS to remove any new duplicates.
|
373 |
-
|
374 |
-
Edits mask_data in place.
|
375 |
-
|
376 |
-
Requires open-cv as a dependency.
|
377 |
-
"""
|
378 |
-
if len(mask_data["rles"]) == 0:
|
379 |
-
return mask_data
|
380 |
-
|
381 |
-
# Filter small disconnected regions and holes
|
382 |
-
new_masks = []
|
383 |
-
scores = []
|
384 |
-
for rle in mask_data["rles"]:
|
385 |
-
mask = rle_to_mask(rle)
|
386 |
-
|
387 |
-
mask, changed = remove_small_regions(mask, min_area, mode="holes")
|
388 |
-
unchanged = not changed
|
389 |
-
mask, changed = remove_small_regions(mask, min_area, mode="islands")
|
390 |
-
unchanged = unchanged and not changed
|
391 |
-
|
392 |
-
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
|
393 |
-
# Give score=0 to changed masks and score=1 to unchanged masks
|
394 |
-
# so NMS will prefer ones that didn't need postprocessing
|
395 |
-
scores.append(float(unchanged))
|
396 |
-
|
397 |
-
# Recalculate boxes and remove any new duplicates
|
398 |
-
masks = torch.cat(new_masks, dim=0)
|
399 |
-
boxes = batched_mask_to_box(masks)
|
400 |
-
keep_by_nms = batched_nms(
|
401 |
-
boxes.float(),
|
402 |
-
torch.as_tensor(scores),
|
403 |
-
torch.zeros_like(boxes[:, 0]), # categories
|
404 |
-
iou_threshold=nms_thresh,
|
405 |
-
)
|
406 |
-
|
407 |
-
# Only recalculate RLEs for masks that have changed
|
408 |
-
for i_mask in keep_by_nms:
|
409 |
-
if scores[i_mask] == 0.0:
|
410 |
-
mask_torch = masks[i_mask].unsqueeze(0)
|
411 |
-
mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
|
412 |
-
mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
|
413 |
-
mask_data.filter(keep_by_nms)
|
414 |
-
|
415 |
-
return mask_data
|
416 |
-
|
417 |
-
def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch):
|
418 |
-
new_masks = []
|
419 |
-
new_iou_preds = []
|
420 |
-
|
421 |
-
for cur_points, cur_point_labels, low_res_mask in batch_iterator(
|
422 |
-
points_per_batch, points, point_labels, low_res_masks
|
423 |
-
):
|
424 |
-
best_masks, best_iou_preds, _ = self.predictor._predict(
|
425 |
-
cur_points[:, None, :],
|
426 |
-
cur_point_labels[:, None],
|
427 |
-
mask_input=low_res_mask[:, None, :],
|
428 |
-
multimask_output=False,
|
429 |
-
return_logits=True,
|
430 |
-
)
|
431 |
-
new_masks.append(best_masks)
|
432 |
-
new_iou_preds.append(best_iou_preds)
|
433 |
-
masks = torch.cat(new_masks, dim=0)
|
434 |
-
return masks, torch.cat(new_iou_preds, dim=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/build_sam.py
DELETED
@@ -1,89 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
import logging
|
8 |
-
|
9 |
-
import torch
|
10 |
-
from hydra import compose
|
11 |
-
from hydra.utils import instantiate
|
12 |
-
from omegaconf import OmegaConf
|
13 |
-
|
14 |
-
|
15 |
-
def build_sam2(
|
16 |
-
config_file,
|
17 |
-
ckpt_path=None,
|
18 |
-
device="cuda",
|
19 |
-
mode="eval",
|
20 |
-
hydra_overrides_extra=[],
|
21 |
-
apply_postprocessing=True,
|
22 |
-
):
|
23 |
-
|
24 |
-
if apply_postprocessing:
|
25 |
-
hydra_overrides_extra = hydra_overrides_extra.copy()
|
26 |
-
hydra_overrides_extra += [
|
27 |
-
# dynamically fall back to multi-mask if the single mask is not stable
|
28 |
-
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
|
29 |
-
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
|
30 |
-
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
|
31 |
-
]
|
32 |
-
# Read config and init model
|
33 |
-
cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
|
34 |
-
OmegaConf.resolve(cfg)
|
35 |
-
model = instantiate(cfg.model, _recursive_=True)
|
36 |
-
_load_checkpoint(model, ckpt_path)
|
37 |
-
model = model.to(device)
|
38 |
-
if mode == "eval":
|
39 |
-
model.eval()
|
40 |
-
return model
|
41 |
-
|
42 |
-
|
43 |
-
def build_sam2_video_predictor(
|
44 |
-
config_file,
|
45 |
-
ckpt_path=None,
|
46 |
-
device="cuda",
|
47 |
-
mode="eval",
|
48 |
-
hydra_overrides_extra=[],
|
49 |
-
apply_postprocessing=True,
|
50 |
-
):
|
51 |
-
hydra_overrides = [
|
52 |
-
"++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
|
53 |
-
]
|
54 |
-
if apply_postprocessing:
|
55 |
-
hydra_overrides_extra = hydra_overrides_extra.copy()
|
56 |
-
hydra_overrides_extra += [
|
57 |
-
# dynamically fall back to multi-mask if the single mask is not stable
|
58 |
-
"++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
|
59 |
-
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
|
60 |
-
"++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
|
61 |
-
# the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
|
62 |
-
"++model.binarize_mask_from_pts_for_mem_enc=true",
|
63 |
-
# fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
|
64 |
-
"++model.fill_hole_area=8",
|
65 |
-
]
|
66 |
-
hydra_overrides.extend(hydra_overrides_extra)
|
67 |
-
|
68 |
-
# Read config and init model
|
69 |
-
cfg = compose(config_name=config_file, overrides=hydra_overrides)
|
70 |
-
OmegaConf.resolve(cfg)
|
71 |
-
model = instantiate(cfg.model, _recursive_=True)
|
72 |
-
_load_checkpoint(model, ckpt_path)
|
73 |
-
model = model.to(device)
|
74 |
-
if mode == "eval":
|
75 |
-
model.eval()
|
76 |
-
return model
|
77 |
-
|
78 |
-
|
79 |
-
def _load_checkpoint(model, ckpt_path):
|
80 |
-
if ckpt_path is not None:
|
81 |
-
sd = torch.load(ckpt_path, map_location="cpu")["model"]
|
82 |
-
missing_keys, unexpected_keys = model.load_state_dict(sd)
|
83 |
-
if missing_keys:
|
84 |
-
logging.error(missing_keys)
|
85 |
-
raise RuntimeError()
|
86 |
-
if unexpected_keys:
|
87 |
-
logging.error(unexpected_keys)
|
88 |
-
raise RuntimeError()
|
89 |
-
logging.info("Loaded checkpoint sucessfully")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/csrc/connected_components.cu
DELETED
@@ -1,289 +0,0 @@
|
|
1 |
-
// Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
// All rights reserved.
|
3 |
-
|
4 |
-
// This source code is licensed under the license found in the
|
5 |
-
// LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
// adapted from https://github.com/zsef123/Connected_components_PyTorch
|
8 |
-
// with license found in the LICENSE_cctorch file in the root directory.
|
9 |
-
#include <ATen/cuda/CUDAContext.h>
|
10 |
-
#include <cuda.h>
|
11 |
-
#include <cuda_runtime.h>
|
12 |
-
#include <torch/extension.h>
|
13 |
-
#include <torch/script.h>
|
14 |
-
#include <vector>
|
15 |
-
|
16 |
-
// 2d
|
17 |
-
#define BLOCK_ROWS 16
|
18 |
-
#define BLOCK_COLS 16
|
19 |
-
|
20 |
-
namespace cc2d {
|
21 |
-
|
22 |
-
template <typename T>
|
23 |
-
__device__ __forceinline__ unsigned char hasBit(T bitmap, unsigned char pos) {
|
24 |
-
return (bitmap >> pos) & 1;
|
25 |
-
}
|
26 |
-
|
27 |
-
__device__ int32_t find(const int32_t* s_buf, int32_t n) {
|
28 |
-
while (s_buf[n] != n)
|
29 |
-
n = s_buf[n];
|
30 |
-
return n;
|
31 |
-
}
|
32 |
-
|
33 |
-
__device__ int32_t find_n_compress(int32_t* s_buf, int32_t n) {
|
34 |
-
const int32_t id = n;
|
35 |
-
while (s_buf[n] != n) {
|
36 |
-
n = s_buf[n];
|
37 |
-
s_buf[id] = n;
|
38 |
-
}
|
39 |
-
return n;
|
40 |
-
}
|
41 |
-
|
42 |
-
__device__ void union_(int32_t* s_buf, int32_t a, int32_t b) {
|
43 |
-
bool done;
|
44 |
-
do {
|
45 |
-
a = find(s_buf, a);
|
46 |
-
b = find(s_buf, b);
|
47 |
-
|
48 |
-
if (a < b) {
|
49 |
-
int32_t old = atomicMin(s_buf + b, a);
|
50 |
-
done = (old == b);
|
51 |
-
b = old;
|
52 |
-
} else if (b < a) {
|
53 |
-
int32_t old = atomicMin(s_buf + a, b);
|
54 |
-
done = (old == a);
|
55 |
-
a = old;
|
56 |
-
} else
|
57 |
-
done = true;
|
58 |
-
|
59 |
-
} while (!done);
|
60 |
-
}
|
61 |
-
|
62 |
-
__global__ void
|
63 |
-
init_labeling(int32_t* label, const uint32_t W, const uint32_t H) {
|
64 |
-
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
65 |
-
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
66 |
-
const uint32_t idx = row * W + col;
|
67 |
-
|
68 |
-
if (row < H && col < W)
|
69 |
-
label[idx] = idx;
|
70 |
-
}
|
71 |
-
|
72 |
-
__global__ void
|
73 |
-
merge(uint8_t* img, int32_t* label, const uint32_t W, const uint32_t H) {
|
74 |
-
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
75 |
-
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
76 |
-
const uint32_t idx = row * W + col;
|
77 |
-
|
78 |
-
if (row >= H || col >= W)
|
79 |
-
return;
|
80 |
-
|
81 |
-
uint32_t P = 0;
|
82 |
-
|
83 |
-
if (img[idx])
|
84 |
-
P |= 0x777;
|
85 |
-
if (row + 1 < H && img[idx + W])
|
86 |
-
P |= 0x777 << 4;
|
87 |
-
if (col + 1 < W && img[idx + 1])
|
88 |
-
P |= 0x777 << 1;
|
89 |
-
|
90 |
-
if (col == 0)
|
91 |
-
P &= 0xEEEE;
|
92 |
-
if (col + 1 >= W)
|
93 |
-
P &= 0x3333;
|
94 |
-
else if (col + 2 >= W)
|
95 |
-
P &= 0x7777;
|
96 |
-
|
97 |
-
if (row == 0)
|
98 |
-
P &= 0xFFF0;
|
99 |
-
if (row + 1 >= H)
|
100 |
-
P &= 0xFF;
|
101 |
-
|
102 |
-
if (P > 0) {
|
103 |
-
// If need check about top-left pixel(if flag the first bit) and hit the
|
104 |
-
// top-left pixel
|
105 |
-
if (hasBit(P, 0) && img[idx - W - 1]) {
|
106 |
-
union_(label, idx, idx - 2 * W - 2); // top left block
|
107 |
-
}
|
108 |
-
|
109 |
-
if ((hasBit(P, 1) && img[idx - W]) || (hasBit(P, 2) && img[idx - W + 1]))
|
110 |
-
union_(label, idx, idx - 2 * W); // top bottom block
|
111 |
-
|
112 |
-
if (hasBit(P, 3) && img[idx + 2 - W])
|
113 |
-
union_(label, idx, idx - 2 * W + 2); // top right block
|
114 |
-
|
115 |
-
if ((hasBit(P, 4) && img[idx - 1]) || (hasBit(P, 8) && img[idx + W - 1]))
|
116 |
-
union_(label, idx, idx - 2); // just left block
|
117 |
-
}
|
118 |
-
}
|
119 |
-
|
120 |
-
__global__ void compression(int32_t* label, const int32_t W, const int32_t H) {
|
121 |
-
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
122 |
-
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
123 |
-
const uint32_t idx = row * W + col;
|
124 |
-
|
125 |
-
if (row < H && col < W)
|
126 |
-
find_n_compress(label, idx);
|
127 |
-
}
|
128 |
-
|
129 |
-
__global__ void final_labeling(
|
130 |
-
const uint8_t* img,
|
131 |
-
int32_t* label,
|
132 |
-
const int32_t W,
|
133 |
-
const int32_t H) {
|
134 |
-
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y) * 2;
|
135 |
-
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x) * 2;
|
136 |
-
const uint32_t idx = row * W + col;
|
137 |
-
|
138 |
-
if (row >= H || col >= W)
|
139 |
-
return;
|
140 |
-
|
141 |
-
int32_t y = label[idx] + 1;
|
142 |
-
|
143 |
-
if (img[idx])
|
144 |
-
label[idx] = y;
|
145 |
-
else
|
146 |
-
label[idx] = 0;
|
147 |
-
|
148 |
-
if (col + 1 < W) {
|
149 |
-
if (img[idx + 1])
|
150 |
-
label[idx + 1] = y;
|
151 |
-
else
|
152 |
-
label[idx + 1] = 0;
|
153 |
-
|
154 |
-
if (row + 1 < H) {
|
155 |
-
if (img[idx + W + 1])
|
156 |
-
label[idx + W + 1] = y;
|
157 |
-
else
|
158 |
-
label[idx + W + 1] = 0;
|
159 |
-
}
|
160 |
-
}
|
161 |
-
|
162 |
-
if (row + 1 < H) {
|
163 |
-
if (img[idx + W])
|
164 |
-
label[idx + W] = y;
|
165 |
-
else
|
166 |
-
label[idx + W] = 0;
|
167 |
-
}
|
168 |
-
}
|
169 |
-
|
170 |
-
__global__ void init_counting(
|
171 |
-
const int32_t* label,
|
172 |
-
int32_t* count_init,
|
173 |
-
const int32_t W,
|
174 |
-
const int32_t H) {
|
175 |
-
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
|
176 |
-
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
|
177 |
-
const uint32_t idx = row * W + col;
|
178 |
-
|
179 |
-
if (row >= H || col >= W)
|
180 |
-
return;
|
181 |
-
|
182 |
-
int32_t y = label[idx];
|
183 |
-
if (y > 0) {
|
184 |
-
int32_t count_idx = y - 1;
|
185 |
-
atomicAdd(count_init + count_idx, 1);
|
186 |
-
}
|
187 |
-
}
|
188 |
-
|
189 |
-
__global__ void final_counting(
|
190 |
-
const int32_t* label,
|
191 |
-
const int32_t* count_init,
|
192 |
-
int32_t* count_final,
|
193 |
-
const int32_t W,
|
194 |
-
const int32_t H) {
|
195 |
-
const uint32_t row = (blockIdx.y * blockDim.y + threadIdx.y);
|
196 |
-
const uint32_t col = (blockIdx.x * blockDim.x + threadIdx.x);
|
197 |
-
const uint32_t idx = row * W + col;
|
198 |
-
|
199 |
-
if (row >= H || col >= W)
|
200 |
-
return;
|
201 |
-
|
202 |
-
int32_t y = label[idx];
|
203 |
-
if (y > 0) {
|
204 |
-
int32_t count_idx = y - 1;
|
205 |
-
count_final[idx] = count_init[count_idx];
|
206 |
-
} else {
|
207 |
-
count_final[idx] = 0;
|
208 |
-
}
|
209 |
-
}
|
210 |
-
|
211 |
-
} // namespace cc2d
|
212 |
-
|
213 |
-
std::vector<torch::Tensor> get_connected_componnets(
|
214 |
-
const torch::Tensor& inputs) {
|
215 |
-
AT_ASSERTM(inputs.is_cuda(), "inputs must be a CUDA tensor");
|
216 |
-
AT_ASSERTM(inputs.ndimension() == 4, "inputs must be [N, 1, H, W] shape");
|
217 |
-
AT_ASSERTM(
|
218 |
-
inputs.scalar_type() == torch::kUInt8, "inputs must be a uint8 type");
|
219 |
-
|
220 |
-
const uint32_t N = inputs.size(0);
|
221 |
-
const uint32_t C = inputs.size(1);
|
222 |
-
const uint32_t H = inputs.size(2);
|
223 |
-
const uint32_t W = inputs.size(3);
|
224 |
-
|
225 |
-
AT_ASSERTM(C == 1, "inputs must be [N, 1, H, W] shape");
|
226 |
-
AT_ASSERTM((H % 2) == 0, "height must be an even number");
|
227 |
-
AT_ASSERTM((W % 2) == 0, "width must be an even number");
|
228 |
-
|
229 |
-
// label must be uint32_t
|
230 |
-
auto label_options =
|
231 |
-
torch::TensorOptions().dtype(torch::kInt32).device(inputs.device());
|
232 |
-
torch::Tensor labels = torch::zeros({N, C, H, W}, label_options);
|
233 |
-
torch::Tensor counts_init = torch::zeros({N, C, H, W}, label_options);
|
234 |
-
torch::Tensor counts_final = torch::zeros({N, C, H, W}, label_options);
|
235 |
-
|
236 |
-
dim3 grid = dim3(
|
237 |
-
((W + 1) / 2 + BLOCK_COLS - 1) / BLOCK_COLS,
|
238 |
-
((H + 1) / 2 + BLOCK_ROWS - 1) / BLOCK_ROWS);
|
239 |
-
dim3 block = dim3(BLOCK_COLS, BLOCK_ROWS);
|
240 |
-
dim3 grid_count =
|
241 |
-
dim3((W + BLOCK_COLS) / BLOCK_COLS, (H + BLOCK_ROWS) / BLOCK_ROWS);
|
242 |
-
dim3 block_count = dim3(BLOCK_COLS, BLOCK_ROWS);
|
243 |
-
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
244 |
-
|
245 |
-
for (int n = 0; n < N; n++) {
|
246 |
-
uint32_t offset = n * H * W;
|
247 |
-
|
248 |
-
cc2d::init_labeling<<<grid, block, 0, stream>>>(
|
249 |
-
labels.data_ptr<int32_t>() + offset, W, H);
|
250 |
-
cc2d::merge<<<grid, block, 0, stream>>>(
|
251 |
-
inputs.data_ptr<uint8_t>() + offset,
|
252 |
-
labels.data_ptr<int32_t>() + offset,
|
253 |
-
W,
|
254 |
-
H);
|
255 |
-
cc2d::compression<<<grid, block, 0, stream>>>(
|
256 |
-
labels.data_ptr<int32_t>() + offset, W, H);
|
257 |
-
cc2d::final_labeling<<<grid, block, 0, stream>>>(
|
258 |
-
inputs.data_ptr<uint8_t>() + offset,
|
259 |
-
labels.data_ptr<int32_t>() + offset,
|
260 |
-
W,
|
261 |
-
H);
|
262 |
-
|
263 |
-
// get the counting of each pixel
|
264 |
-
cc2d::init_counting<<<grid_count, block_count, 0, stream>>>(
|
265 |
-
labels.data_ptr<int32_t>() + offset,
|
266 |
-
counts_init.data_ptr<int32_t>() + offset,
|
267 |
-
W,
|
268 |
-
H);
|
269 |
-
cc2d::final_counting<<<grid_count, block_count, 0, stream>>>(
|
270 |
-
labels.data_ptr<int32_t>() + offset,
|
271 |
-
counts_init.data_ptr<int32_t>() + offset,
|
272 |
-
counts_final.data_ptr<int32_t>() + offset,
|
273 |
-
W,
|
274 |
-
H);
|
275 |
-
}
|
276 |
-
|
277 |
-
// returned values are [labels, counts]
|
278 |
-
std::vector<torch::Tensor> outputs;
|
279 |
-
outputs.push_back(labels);
|
280 |
-
outputs.push_back(counts_final);
|
281 |
-
return outputs;
|
282 |
-
}
|
283 |
-
|
284 |
-
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
285 |
-
m.def(
|
286 |
-
"get_connected_componnets",
|
287 |
-
&get_connected_componnets,
|
288 |
-
"get_connected_componnets");
|
289 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/modeling/__init__.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
|
|
|
|
|
|
sam2/modeling/backbones/__init__.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
|
|
|
|
|
|
sam2/modeling/backbones/hieradet.py
DELETED
@@ -1,295 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
from functools import partial
|
8 |
-
from typing import List, Tuple, Union
|
9 |
-
|
10 |
-
import torch
|
11 |
-
import torch.nn as nn
|
12 |
-
import torch.nn.functional as F
|
13 |
-
|
14 |
-
from sam2.modeling.backbones.utils import (
|
15 |
-
PatchEmbed,
|
16 |
-
window_partition,
|
17 |
-
window_unpartition,
|
18 |
-
)
|
19 |
-
|
20 |
-
from sam2.modeling.sam2_utils import DropPath, MLP
|
21 |
-
|
22 |
-
|
23 |
-
def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
|
24 |
-
if pool is None:
|
25 |
-
return x
|
26 |
-
# (B, H, W, C) -> (B, C, H, W)
|
27 |
-
x = x.permute(0, 3, 1, 2)
|
28 |
-
x = pool(x)
|
29 |
-
# (B, C, H', W') -> (B, H', W', C)
|
30 |
-
x = x.permute(0, 2, 3, 1)
|
31 |
-
if norm:
|
32 |
-
x = norm(x)
|
33 |
-
|
34 |
-
return x
|
35 |
-
|
36 |
-
|
37 |
-
class MultiScaleAttention(nn.Module):
|
38 |
-
def __init__(
|
39 |
-
self,
|
40 |
-
dim: int,
|
41 |
-
dim_out: int,
|
42 |
-
num_heads: int,
|
43 |
-
q_pool: nn.Module = None,
|
44 |
-
):
|
45 |
-
super().__init__()
|
46 |
-
|
47 |
-
self.dim = dim
|
48 |
-
self.dim_out = dim_out
|
49 |
-
|
50 |
-
self.num_heads = num_heads
|
51 |
-
head_dim = dim_out // num_heads
|
52 |
-
self.scale = head_dim**-0.5
|
53 |
-
|
54 |
-
self.q_pool = q_pool
|
55 |
-
self.qkv = nn.Linear(dim, dim_out * 3)
|
56 |
-
self.proj = nn.Linear(dim_out, dim_out)
|
57 |
-
|
58 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
59 |
-
B, H, W, _ = x.shape
|
60 |
-
# qkv with shape (B, H * W, 3, nHead, C)
|
61 |
-
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
|
62 |
-
# q, k, v with shape (B, H * W, nheads, C)
|
63 |
-
q, k, v = torch.unbind(qkv, 2)
|
64 |
-
|
65 |
-
# Q pooling (for downsample at stage changes)
|
66 |
-
if self.q_pool:
|
67 |
-
q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
|
68 |
-
H, W = q.shape[1:3] # downsampled shape
|
69 |
-
q = q.reshape(B, H * W, self.num_heads, -1)
|
70 |
-
|
71 |
-
# Torch's SDPA expects [B, nheads, H*W, C] so we transpose
|
72 |
-
x = F.scaled_dot_product_attention(
|
73 |
-
q.transpose(1, 2),
|
74 |
-
k.transpose(1, 2),
|
75 |
-
v.transpose(1, 2),
|
76 |
-
)
|
77 |
-
# Transpose back
|
78 |
-
x = x.transpose(1, 2)
|
79 |
-
x = x.reshape(B, H, W, -1)
|
80 |
-
|
81 |
-
x = self.proj(x)
|
82 |
-
|
83 |
-
return x
|
84 |
-
|
85 |
-
|
86 |
-
class MultiScaleBlock(nn.Module):
|
87 |
-
def __init__(
|
88 |
-
self,
|
89 |
-
dim: int,
|
90 |
-
dim_out: int,
|
91 |
-
num_heads: int,
|
92 |
-
mlp_ratio: float = 4.0,
|
93 |
-
drop_path: float = 0.0,
|
94 |
-
norm_layer: Union[nn.Module, str] = "LayerNorm",
|
95 |
-
q_stride: Tuple[int, int] = None,
|
96 |
-
act_layer: nn.Module = nn.GELU,
|
97 |
-
window_size: int = 0,
|
98 |
-
):
|
99 |
-
super().__init__()
|
100 |
-
|
101 |
-
if isinstance(norm_layer, str):
|
102 |
-
norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)
|
103 |
-
|
104 |
-
self.dim = dim
|
105 |
-
self.dim_out = dim_out
|
106 |
-
self.norm1 = norm_layer(dim)
|
107 |
-
|
108 |
-
self.window_size = window_size
|
109 |
-
|
110 |
-
self.pool, self.q_stride = None, q_stride
|
111 |
-
if self.q_stride:
|
112 |
-
self.pool = nn.MaxPool2d(
|
113 |
-
kernel_size=q_stride, stride=q_stride, ceil_mode=False
|
114 |
-
)
|
115 |
-
|
116 |
-
self.attn = MultiScaleAttention(
|
117 |
-
dim,
|
118 |
-
dim_out,
|
119 |
-
num_heads=num_heads,
|
120 |
-
q_pool=self.pool,
|
121 |
-
)
|
122 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
123 |
-
|
124 |
-
self.norm2 = norm_layer(dim_out)
|
125 |
-
self.mlp = MLP(
|
126 |
-
dim_out,
|
127 |
-
int(dim_out * mlp_ratio),
|
128 |
-
dim_out,
|
129 |
-
num_layers=2,
|
130 |
-
activation=act_layer,
|
131 |
-
)
|
132 |
-
|
133 |
-
if dim != dim_out:
|
134 |
-
self.proj = nn.Linear(dim, dim_out)
|
135 |
-
|
136 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
137 |
-
shortcut = x # B, H, W, C
|
138 |
-
x = self.norm1(x)
|
139 |
-
|
140 |
-
# Skip connection
|
141 |
-
if self.dim != self.dim_out:
|
142 |
-
shortcut = do_pool(self.proj(x), self.pool)
|
143 |
-
|
144 |
-
# Window partition
|
145 |
-
window_size = self.window_size
|
146 |
-
if window_size > 0:
|
147 |
-
H, W = x.shape[1], x.shape[2]
|
148 |
-
x, pad_hw = window_partition(x, window_size)
|
149 |
-
|
150 |
-
# Window Attention + Q Pooling (if stage change)
|
151 |
-
x = self.attn(x)
|
152 |
-
if self.q_stride:
|
153 |
-
# Shapes have changed due to Q pooling
|
154 |
-
window_size = self.window_size // self.q_stride[0]
|
155 |
-
H, W = shortcut.shape[1:3]
|
156 |
-
|
157 |
-
pad_h = (window_size - H % window_size) % window_size
|
158 |
-
pad_w = (window_size - W % window_size) % window_size
|
159 |
-
pad_hw = (H + pad_h, W + pad_w)
|
160 |
-
|
161 |
-
# Reverse window partition
|
162 |
-
if self.window_size > 0:
|
163 |
-
x = window_unpartition(x, window_size, pad_hw, (H, W))
|
164 |
-
|
165 |
-
x = shortcut + self.drop_path(x)
|
166 |
-
# MLP
|
167 |
-
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
168 |
-
return x
|
169 |
-
|
170 |
-
|
171 |
-
class Hiera(nn.Module):
|
172 |
-
"""
|
173 |
-
Reference: https://arxiv.org/abs/2306.00989
|
174 |
-
"""
|
175 |
-
|
176 |
-
def __init__(
|
177 |
-
self,
|
178 |
-
embed_dim: int = 96, # initial embed dim
|
179 |
-
num_heads: int = 1, # initial number of heads
|
180 |
-
drop_path_rate: float = 0.0, # stochastic depth
|
181 |
-
q_pool: int = 3, # number of q_pool stages
|
182 |
-
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
|
183 |
-
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
|
184 |
-
dim_mul: float = 2.0, # dim_mul factor at stage shift
|
185 |
-
head_mul: float = 2.0, # head_mul factor at stage shift
|
186 |
-
window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
|
187 |
-
# window size per stage, when not using global att.
|
188 |
-
window_spec: Tuple[int, ...] = (
|
189 |
-
8,
|
190 |
-
4,
|
191 |
-
14,
|
192 |
-
7,
|
193 |
-
),
|
194 |
-
# global attn in these blocks
|
195 |
-
global_att_blocks: Tuple[int, ...] = (
|
196 |
-
12,
|
197 |
-
16,
|
198 |
-
20,
|
199 |
-
),
|
200 |
-
return_interm_layers=True, # return feats from every stage
|
201 |
-
):
|
202 |
-
super().__init__()
|
203 |
-
|
204 |
-
assert len(stages) == len(window_spec)
|
205 |
-
self.window_spec = window_spec
|
206 |
-
|
207 |
-
depth = sum(stages)
|
208 |
-
self.q_stride = q_stride
|
209 |
-
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
|
210 |
-
assert 0 <= q_pool <= len(self.stage_ends[:-1])
|
211 |
-
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
|
212 |
-
self.return_interm_layers = return_interm_layers
|
213 |
-
|
214 |
-
self.patch_embed = PatchEmbed(
|
215 |
-
embed_dim=embed_dim,
|
216 |
-
)
|
217 |
-
# Which blocks have global att?
|
218 |
-
self.global_att_blocks = global_att_blocks
|
219 |
-
|
220 |
-
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
|
221 |
-
self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
|
222 |
-
self.pos_embed = nn.Parameter(
|
223 |
-
torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size)
|
224 |
-
)
|
225 |
-
self.pos_embed_window = nn.Parameter(
|
226 |
-
torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0])
|
227 |
-
)
|
228 |
-
|
229 |
-
dpr = [
|
230 |
-
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
231 |
-
] # stochastic depth decay rule
|
232 |
-
|
233 |
-
cur_stage = 1
|
234 |
-
self.blocks = nn.ModuleList()
|
235 |
-
|
236 |
-
for i in range(depth):
|
237 |
-
dim_out = embed_dim
|
238 |
-
# lags by a block, so first block of
|
239 |
-
# next stage uses an initial window size
|
240 |
-
# of previous stage and final window size of current stage
|
241 |
-
window_size = self.window_spec[cur_stage - 1]
|
242 |
-
|
243 |
-
if self.global_att_blocks is not None:
|
244 |
-
window_size = 0 if i in self.global_att_blocks else window_size
|
245 |
-
|
246 |
-
if i - 1 in self.stage_ends:
|
247 |
-
dim_out = int(embed_dim * dim_mul)
|
248 |
-
num_heads = int(num_heads * head_mul)
|
249 |
-
cur_stage += 1
|
250 |
-
|
251 |
-
block = MultiScaleBlock(
|
252 |
-
dim=embed_dim,
|
253 |
-
dim_out=dim_out,
|
254 |
-
num_heads=num_heads,
|
255 |
-
drop_path=dpr[i],
|
256 |
-
q_stride=self.q_stride if i in self.q_pool_blocks else None,
|
257 |
-
window_size=window_size,
|
258 |
-
)
|
259 |
-
|
260 |
-
embed_dim = dim_out
|
261 |
-
self.blocks.append(block)
|
262 |
-
|
263 |
-
self.channel_list = (
|
264 |
-
[self.blocks[i].dim_out for i in self.stage_ends[::-1]]
|
265 |
-
if return_interm_layers
|
266 |
-
else [self.blocks[-1].dim_out]
|
267 |
-
)
|
268 |
-
|
269 |
-
def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
|
270 |
-
h, w = hw
|
271 |
-
window_embed = self.pos_embed_window
|
272 |
-
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
|
273 |
-
pos_embed = pos_embed + window_embed.tile(
|
274 |
-
[x // y for x, y in zip(pos_embed.shape, window_embed.shape)]
|
275 |
-
)
|
276 |
-
pos_embed = pos_embed.permute(0, 2, 3, 1)
|
277 |
-
return pos_embed
|
278 |
-
|
279 |
-
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
280 |
-
x = self.patch_embed(x)
|
281 |
-
# x: (B, H, W, C)
|
282 |
-
|
283 |
-
# Add pos embed
|
284 |
-
x = x + self._get_pos_embed(x.shape[1:3])
|
285 |
-
|
286 |
-
outputs = []
|
287 |
-
for i, blk in enumerate(self.blocks):
|
288 |
-
x = blk(x)
|
289 |
-
if (i == self.stage_ends[-1]) or (
|
290 |
-
i in self.stage_ends and self.return_interm_layers
|
291 |
-
):
|
292 |
-
feats = x.permute(0, 3, 1, 2)
|
293 |
-
outputs.append(feats)
|
294 |
-
|
295 |
-
return outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/modeling/backbones/image_encoder.py
DELETED
@@ -1,133 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
from typing import List, Optional
|
8 |
-
|
9 |
-
import torch
|
10 |
-
import torch.nn as nn
|
11 |
-
import torch.nn.functional as F
|
12 |
-
|
13 |
-
|
14 |
-
class ImageEncoder(nn.Module):
|
15 |
-
def __init__(
|
16 |
-
self,
|
17 |
-
trunk: nn.Module,
|
18 |
-
neck: nn.Module,
|
19 |
-
scalp: int = 0,
|
20 |
-
):
|
21 |
-
super().__init__()
|
22 |
-
self.trunk = trunk
|
23 |
-
self.neck = neck
|
24 |
-
self.scalp = scalp
|
25 |
-
assert (
|
26 |
-
self.trunk.channel_list == self.neck.backbone_channel_list
|
27 |
-
), f"Channel dims of trunk and neck do not match. Trunk: {self.trunk.channel_list}, neck: {self.neck.backbone_channel_list}"
|
28 |
-
|
29 |
-
def forward(self, sample: torch.Tensor):
|
30 |
-
# Forward through backbone
|
31 |
-
features, pos = self.neck(self.trunk(sample))
|
32 |
-
if self.scalp > 0:
|
33 |
-
# Discard the lowest resolution features
|
34 |
-
features, pos = features[: -self.scalp], pos[: -self.scalp]
|
35 |
-
|
36 |
-
src = features[-1]
|
37 |
-
output = {
|
38 |
-
"vision_features": src,
|
39 |
-
"vision_pos_enc": pos,
|
40 |
-
"backbone_fpn": features,
|
41 |
-
}
|
42 |
-
return output
|
43 |
-
|
44 |
-
|
45 |
-
class FpnNeck(nn.Module):
|
46 |
-
"""
|
47 |
-
A modified variant of Feature Pyramid Network (FPN) neck
|
48 |
-
(we remove output conv and also do bicubic interpolation similar to ViT
|
49 |
-
pos embed interpolation)
|
50 |
-
"""
|
51 |
-
|
52 |
-
def __init__(
|
53 |
-
self,
|
54 |
-
position_encoding: nn.Module,
|
55 |
-
d_model: int,
|
56 |
-
backbone_channel_list: List[int],
|
57 |
-
kernel_size: int = 1,
|
58 |
-
stride: int = 1,
|
59 |
-
padding: int = 0,
|
60 |
-
fpn_interp_model: str = "bilinear",
|
61 |
-
fuse_type: str = "sum",
|
62 |
-
fpn_top_down_levels: Optional[List[int]] = None,
|
63 |
-
):
|
64 |
-
"""Initialize the neck
|
65 |
-
:param trunk: the backbone
|
66 |
-
:param position_encoding: the positional encoding to use
|
67 |
-
:param d_model: the dimension of the model
|
68 |
-
:param neck_norm: the normalization to use
|
69 |
-
"""
|
70 |
-
super().__init__()
|
71 |
-
self.position_encoding = position_encoding
|
72 |
-
self.convs = nn.ModuleList()
|
73 |
-
self.backbone_channel_list = backbone_channel_list
|
74 |
-
for dim in backbone_channel_list:
|
75 |
-
current = nn.Sequential()
|
76 |
-
current.add_module(
|
77 |
-
"conv",
|
78 |
-
nn.Conv2d(
|
79 |
-
in_channels=dim,
|
80 |
-
out_channels=d_model,
|
81 |
-
kernel_size=kernel_size,
|
82 |
-
stride=stride,
|
83 |
-
padding=padding,
|
84 |
-
),
|
85 |
-
)
|
86 |
-
|
87 |
-
self.convs.append(current)
|
88 |
-
self.fpn_interp_model = fpn_interp_model
|
89 |
-
assert fuse_type in ["sum", "avg"]
|
90 |
-
self.fuse_type = fuse_type
|
91 |
-
|
92 |
-
# levels to have top-down features in its outputs
|
93 |
-
# e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
|
94 |
-
# have top-down propagation, while outputs of level 0 and level 1 have only
|
95 |
-
# lateral features from the same backbone level.
|
96 |
-
if fpn_top_down_levels is None:
|
97 |
-
# default is to have top-down features on all levels
|
98 |
-
fpn_top_down_levels = range(len(self.convs))
|
99 |
-
self.fpn_top_down_levels = list(fpn_top_down_levels)
|
100 |
-
|
101 |
-
def forward(self, xs: List[torch.Tensor]):
|
102 |
-
|
103 |
-
out = [None] * len(self.convs)
|
104 |
-
pos = [None] * len(self.convs)
|
105 |
-
assert len(xs) == len(self.convs)
|
106 |
-
# fpn forward pass
|
107 |
-
# see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
|
108 |
-
prev_features = None
|
109 |
-
# forward in top-down order (from low to high resolution)
|
110 |
-
n = len(self.convs) - 1
|
111 |
-
for i in range(n, -1, -1):
|
112 |
-
x = xs[i]
|
113 |
-
lateral_features = self.convs[n - i](x)
|
114 |
-
if i in self.fpn_top_down_levels and prev_features is not None:
|
115 |
-
top_down_features = F.interpolate(
|
116 |
-
prev_features.to(dtype=torch.float32),
|
117 |
-
scale_factor=2.0,
|
118 |
-
mode=self.fpn_interp_model,
|
119 |
-
align_corners=(
|
120 |
-
None if self.fpn_interp_model == "nearest" else False
|
121 |
-
),
|
122 |
-
antialias=False,
|
123 |
-
)
|
124 |
-
prev_features = lateral_features + top_down_features
|
125 |
-
if self.fuse_type == "avg":
|
126 |
-
prev_features /= 2
|
127 |
-
else:
|
128 |
-
prev_features = lateral_features
|
129 |
-
x_out = prev_features
|
130 |
-
out[i] = x_out
|
131 |
-
pos[i] = self.position_encoding(x_out).to(x_out.dtype)
|
132 |
-
|
133 |
-
return out, pos
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/modeling/backbones/utils.py
DELETED
@@ -1,95 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
"""Some utilities for backbones, in particular for windowing"""
|
8 |
-
|
9 |
-
from typing import Tuple
|
10 |
-
|
11 |
-
import torch
|
12 |
-
import torch.nn as nn
|
13 |
-
import torch.nn.functional as F
|
14 |
-
|
15 |
-
|
16 |
-
def window_partition(x, window_size):
|
17 |
-
"""
|
18 |
-
Partition into non-overlapping windows with padding if needed.
|
19 |
-
Args:
|
20 |
-
x (tensor): input tokens with [B, H, W, C].
|
21 |
-
window_size (int): window size.
|
22 |
-
Returns:
|
23 |
-
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
24 |
-
(Hp, Wp): padded height and width before partition
|
25 |
-
"""
|
26 |
-
B, H, W, C = x.shape
|
27 |
-
|
28 |
-
pad_h = (window_size - H % window_size) % window_size
|
29 |
-
pad_w = (window_size - W % window_size) % window_size
|
30 |
-
if pad_h > 0 or pad_w > 0:
|
31 |
-
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
32 |
-
Hp, Wp = H + pad_h, W + pad_w
|
33 |
-
|
34 |
-
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
35 |
-
windows = (
|
36 |
-
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
37 |
-
)
|
38 |
-
return windows, (Hp, Wp)
|
39 |
-
|
40 |
-
|
41 |
-
def window_unpartition(windows, window_size, pad_hw, hw):
|
42 |
-
"""
|
43 |
-
Window unpartition into original sequences and removing padding.
|
44 |
-
Args:
|
45 |
-
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
46 |
-
window_size (int): window size.
|
47 |
-
pad_hw (Tuple): padded height and width (Hp, Wp).
|
48 |
-
hw (Tuple): original height and width (H, W) before padding.
|
49 |
-
Returns:
|
50 |
-
x: unpartitioned sequences with [B, H, W, C].
|
51 |
-
"""
|
52 |
-
Hp, Wp = pad_hw
|
53 |
-
H, W = hw
|
54 |
-
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
55 |
-
x = windows.view(
|
56 |
-
B, Hp // window_size, Wp // window_size, window_size, window_size, -1
|
57 |
-
)
|
58 |
-
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
59 |
-
|
60 |
-
if Hp > H or Wp > W:
|
61 |
-
x = x[:, :H, :W, :].contiguous()
|
62 |
-
return x
|
63 |
-
|
64 |
-
|
65 |
-
class PatchEmbed(nn.Module):
|
66 |
-
"""
|
67 |
-
Image to Patch Embedding.
|
68 |
-
"""
|
69 |
-
|
70 |
-
def __init__(
|
71 |
-
self,
|
72 |
-
kernel_size: Tuple[int, ...] = (7, 7),
|
73 |
-
stride: Tuple[int, ...] = (4, 4),
|
74 |
-
padding: Tuple[int, ...] = (3, 3),
|
75 |
-
in_chans: int = 3,
|
76 |
-
embed_dim: int = 768,
|
77 |
-
):
|
78 |
-
"""
|
79 |
-
Args:
|
80 |
-
kernel_size (Tuple): kernel size of the projection layer.
|
81 |
-
stride (Tuple): stride of the projection layer.
|
82 |
-
padding (Tuple): padding size of the projection layer.
|
83 |
-
in_chans (int): Number of input image channels.
|
84 |
-
embed_dim (int): embed_dim (int): Patch embedding dimension.
|
85 |
-
"""
|
86 |
-
super().__init__()
|
87 |
-
self.proj = nn.Conv2d(
|
88 |
-
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
89 |
-
)
|
90 |
-
|
91 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
92 |
-
x = self.proj(x)
|
93 |
-
# B C H W -> B H W C
|
94 |
-
x = x.permute(0, 2, 3, 1)
|
95 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/modeling/memory_attention.py
DELETED
@@ -1,169 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
from typing import Optional
|
8 |
-
|
9 |
-
import torch
|
10 |
-
from torch import nn, Tensor
|
11 |
-
|
12 |
-
from sam2.modeling.sam.transformer import RoPEAttention
|
13 |
-
|
14 |
-
from sam2.modeling.sam2_utils import get_activation_fn, get_clones
|
15 |
-
|
16 |
-
|
17 |
-
class MemoryAttentionLayer(nn.Module):
|
18 |
-
|
19 |
-
def __init__(
|
20 |
-
self,
|
21 |
-
activation: str,
|
22 |
-
cross_attention: nn.Module,
|
23 |
-
d_model: int,
|
24 |
-
dim_feedforward: int,
|
25 |
-
dropout: float,
|
26 |
-
pos_enc_at_attn: bool,
|
27 |
-
pos_enc_at_cross_attn_keys: bool,
|
28 |
-
pos_enc_at_cross_attn_queries: bool,
|
29 |
-
self_attention: nn.Module,
|
30 |
-
):
|
31 |
-
super().__init__()
|
32 |
-
self.d_model = d_model
|
33 |
-
self.dim_feedforward = dim_feedforward
|
34 |
-
self.dropout_value = dropout
|
35 |
-
self.self_attn = self_attention
|
36 |
-
self.cross_attn_image = cross_attention
|
37 |
-
|
38 |
-
# Implementation of Feedforward model
|
39 |
-
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
40 |
-
self.dropout = nn.Dropout(dropout)
|
41 |
-
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
42 |
-
|
43 |
-
self.norm1 = nn.LayerNorm(d_model)
|
44 |
-
self.norm2 = nn.LayerNorm(d_model)
|
45 |
-
self.norm3 = nn.LayerNorm(d_model)
|
46 |
-
self.dropout1 = nn.Dropout(dropout)
|
47 |
-
self.dropout2 = nn.Dropout(dropout)
|
48 |
-
self.dropout3 = nn.Dropout(dropout)
|
49 |
-
|
50 |
-
self.activation_str = activation
|
51 |
-
self.activation = get_activation_fn(activation)
|
52 |
-
|
53 |
-
# Where to add pos enc
|
54 |
-
self.pos_enc_at_attn = pos_enc_at_attn
|
55 |
-
self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries
|
56 |
-
self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys
|
57 |
-
|
58 |
-
def _forward_sa(self, tgt, query_pos):
|
59 |
-
# Self-Attention
|
60 |
-
tgt2 = self.norm1(tgt)
|
61 |
-
q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2
|
62 |
-
tgt2 = self.self_attn(q, k, v=tgt2)
|
63 |
-
tgt = tgt + self.dropout1(tgt2)
|
64 |
-
return tgt
|
65 |
-
|
66 |
-
def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0):
|
67 |
-
kwds = {}
|
68 |
-
if num_k_exclude_rope > 0:
|
69 |
-
assert isinstance(self.cross_attn_image, RoPEAttention)
|
70 |
-
kwds = {"num_k_exclude_rope": num_k_exclude_rope}
|
71 |
-
|
72 |
-
# Cross-Attention
|
73 |
-
tgt2 = self.norm2(tgt)
|
74 |
-
tgt2 = self.cross_attn_image(
|
75 |
-
q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2,
|
76 |
-
k=memory + pos if self.pos_enc_at_cross_attn_keys else memory,
|
77 |
-
v=memory,
|
78 |
-
**kwds,
|
79 |
-
)
|
80 |
-
tgt = tgt + self.dropout2(tgt2)
|
81 |
-
return tgt
|
82 |
-
|
83 |
-
def forward(
|
84 |
-
self,
|
85 |
-
tgt,
|
86 |
-
memory,
|
87 |
-
pos: Optional[Tensor] = None,
|
88 |
-
query_pos: Optional[Tensor] = None,
|
89 |
-
num_k_exclude_rope: int = 0,
|
90 |
-
) -> torch.Tensor:
|
91 |
-
|
92 |
-
# Self-Attn, Cross-Attn
|
93 |
-
tgt = self._forward_sa(tgt, query_pos)
|
94 |
-
tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope)
|
95 |
-
# MLP
|
96 |
-
tgt2 = self.norm3(tgt)
|
97 |
-
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
98 |
-
tgt = tgt + self.dropout3(tgt2)
|
99 |
-
return tgt
|
100 |
-
|
101 |
-
|
102 |
-
class MemoryAttention(nn.Module):
|
103 |
-
def __init__(
|
104 |
-
self,
|
105 |
-
d_model: int,
|
106 |
-
pos_enc_at_input: bool,
|
107 |
-
layer: nn.Module,
|
108 |
-
num_layers: int,
|
109 |
-
batch_first: bool = True, # Do layers expect batch first input?
|
110 |
-
):
|
111 |
-
super().__init__()
|
112 |
-
self.d_model = d_model
|
113 |
-
self.layers = get_clones(layer, num_layers)
|
114 |
-
self.num_layers = num_layers
|
115 |
-
self.norm = nn.LayerNorm(d_model)
|
116 |
-
self.pos_enc_at_input = pos_enc_at_input
|
117 |
-
self.batch_first = batch_first
|
118 |
-
|
119 |
-
def forward(
|
120 |
-
self,
|
121 |
-
curr: torch.Tensor, # self-attention inputs
|
122 |
-
memory: torch.Tensor, # cross-attention inputs
|
123 |
-
curr_pos: Optional[Tensor] = None, # pos_enc for self-attention inputs
|
124 |
-
memory_pos: Optional[Tensor] = None, # pos_enc for cross-attention inputs
|
125 |
-
num_obj_ptr_tokens: int = 0, # number of object pointer *tokens*
|
126 |
-
):
|
127 |
-
if isinstance(curr, list):
|
128 |
-
assert isinstance(curr_pos, list)
|
129 |
-
assert len(curr) == len(curr_pos) == 1
|
130 |
-
curr, curr_pos = (
|
131 |
-
curr[0],
|
132 |
-
curr_pos[0],
|
133 |
-
)
|
134 |
-
|
135 |
-
assert (
|
136 |
-
curr.shape[1] == memory.shape[1]
|
137 |
-
), "Batch size must be the same for curr and memory"
|
138 |
-
|
139 |
-
output = curr
|
140 |
-
if self.pos_enc_at_input and curr_pos is not None:
|
141 |
-
output = output + 0.1 * curr_pos
|
142 |
-
|
143 |
-
if self.batch_first:
|
144 |
-
# Convert to batch first
|
145 |
-
output = output.transpose(0, 1)
|
146 |
-
curr_pos = curr_pos.transpose(0, 1)
|
147 |
-
memory = memory.transpose(0, 1)
|
148 |
-
memory_pos = memory_pos.transpose(0, 1)
|
149 |
-
|
150 |
-
for layer in self.layers:
|
151 |
-
kwds = {}
|
152 |
-
if isinstance(layer.cross_attn_image, RoPEAttention):
|
153 |
-
kwds = {"num_k_exclude_rope": num_obj_ptr_tokens}
|
154 |
-
|
155 |
-
output = layer(
|
156 |
-
tgt=output,
|
157 |
-
memory=memory,
|
158 |
-
pos=memory_pos,
|
159 |
-
query_pos=curr_pos,
|
160 |
-
**kwds,
|
161 |
-
)
|
162 |
-
normed_output = self.norm(output)
|
163 |
-
|
164 |
-
if self.batch_first:
|
165 |
-
# Convert back to seq first
|
166 |
-
normed_output = normed_output.transpose(0, 1)
|
167 |
-
curr_pos = curr_pos.transpose(0, 1)
|
168 |
-
|
169 |
-
return normed_output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/modeling/memory_encoder.py
DELETED
@@ -1,181 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
import math
|
8 |
-
from typing import Tuple
|
9 |
-
|
10 |
-
import torch
|
11 |
-
import torch.nn as nn
|
12 |
-
import torch.nn.functional as F
|
13 |
-
|
14 |
-
from sam2.modeling.sam2_utils import DropPath, get_clones, LayerNorm2d
|
15 |
-
|
16 |
-
|
17 |
-
class MaskDownSampler(nn.Module):
|
18 |
-
"""
|
19 |
-
Progressively downsample a mask by total_stride, each time by stride.
|
20 |
-
Note that LayerNorm is applied per *token*, like in ViT.
|
21 |
-
|
22 |
-
With each downsample (by a factor stride**2), channel capacity increases by the same factor.
|
23 |
-
In the end, we linearly project to embed_dim channels.
|
24 |
-
"""
|
25 |
-
|
26 |
-
def __init__(
|
27 |
-
self,
|
28 |
-
embed_dim=256,
|
29 |
-
kernel_size=4,
|
30 |
-
stride=4,
|
31 |
-
padding=0,
|
32 |
-
total_stride=16,
|
33 |
-
activation=nn.GELU,
|
34 |
-
):
|
35 |
-
super().__init__()
|
36 |
-
num_layers = int(math.log2(total_stride) // math.log2(stride))
|
37 |
-
assert stride**num_layers == total_stride
|
38 |
-
self.encoder = nn.Sequential()
|
39 |
-
mask_in_chans, mask_out_chans = 1, 1
|
40 |
-
for _ in range(num_layers):
|
41 |
-
mask_out_chans = mask_in_chans * (stride**2)
|
42 |
-
self.encoder.append(
|
43 |
-
nn.Conv2d(
|
44 |
-
mask_in_chans,
|
45 |
-
mask_out_chans,
|
46 |
-
kernel_size=kernel_size,
|
47 |
-
stride=stride,
|
48 |
-
padding=padding,
|
49 |
-
)
|
50 |
-
)
|
51 |
-
self.encoder.append(LayerNorm2d(mask_out_chans))
|
52 |
-
self.encoder.append(activation())
|
53 |
-
mask_in_chans = mask_out_chans
|
54 |
-
|
55 |
-
self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))
|
56 |
-
|
57 |
-
def forward(self, x):
|
58 |
-
return self.encoder(x)
|
59 |
-
|
60 |
-
|
61 |
-
# Lightly adapted from ConvNext (https://github.com/facebookresearch/ConvNeXt)
|
62 |
-
class CXBlock(nn.Module):
|
63 |
-
r"""ConvNeXt Block. There are two equivalent implementations:
|
64 |
-
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
65 |
-
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
66 |
-
We use (2) as we find it slightly faster in PyTorch
|
67 |
-
|
68 |
-
Args:
|
69 |
-
dim (int): Number of input channels.
|
70 |
-
drop_path (float): Stochastic depth rate. Default: 0.0
|
71 |
-
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
72 |
-
"""
|
73 |
-
|
74 |
-
def __init__(
|
75 |
-
self,
|
76 |
-
dim,
|
77 |
-
kernel_size=7,
|
78 |
-
padding=3,
|
79 |
-
drop_path=0.0,
|
80 |
-
layer_scale_init_value=1e-6,
|
81 |
-
use_dwconv=True,
|
82 |
-
):
|
83 |
-
super().__init__()
|
84 |
-
self.dwconv = nn.Conv2d(
|
85 |
-
dim,
|
86 |
-
dim,
|
87 |
-
kernel_size=kernel_size,
|
88 |
-
padding=padding,
|
89 |
-
groups=dim if use_dwconv else 1,
|
90 |
-
) # depthwise conv
|
91 |
-
self.norm = LayerNorm2d(dim, eps=1e-6)
|
92 |
-
self.pwconv1 = nn.Linear(
|
93 |
-
dim, 4 * dim
|
94 |
-
) # pointwise/1x1 convs, implemented with linear layers
|
95 |
-
self.act = nn.GELU()
|
96 |
-
self.pwconv2 = nn.Linear(4 * dim, dim)
|
97 |
-
self.gamma = (
|
98 |
-
nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
|
99 |
-
if layer_scale_init_value > 0
|
100 |
-
else None
|
101 |
-
)
|
102 |
-
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
103 |
-
|
104 |
-
def forward(self, x):
|
105 |
-
input = x
|
106 |
-
x = self.dwconv(x)
|
107 |
-
x = self.norm(x)
|
108 |
-
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
|
109 |
-
x = self.pwconv1(x)
|
110 |
-
x = self.act(x)
|
111 |
-
x = self.pwconv2(x)
|
112 |
-
if self.gamma is not None:
|
113 |
-
x = self.gamma * x
|
114 |
-
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
|
115 |
-
|
116 |
-
x = input + self.drop_path(x)
|
117 |
-
return x
|
118 |
-
|
119 |
-
|
120 |
-
class Fuser(nn.Module):
|
121 |
-
def __init__(self, layer, num_layers, dim=None, input_projection=False):
|
122 |
-
super().__init__()
|
123 |
-
self.proj = nn.Identity()
|
124 |
-
self.layers = get_clones(layer, num_layers)
|
125 |
-
|
126 |
-
if input_projection:
|
127 |
-
assert dim is not None
|
128 |
-
self.proj = nn.Conv2d(dim, dim, kernel_size=1)
|
129 |
-
|
130 |
-
def forward(self, x):
|
131 |
-
# normally x: (N, C, H, W)
|
132 |
-
x = self.proj(x)
|
133 |
-
for layer in self.layers:
|
134 |
-
x = layer(x)
|
135 |
-
return x
|
136 |
-
|
137 |
-
|
138 |
-
class MemoryEncoder(nn.Module):
|
139 |
-
def __init__(
|
140 |
-
self,
|
141 |
-
out_dim,
|
142 |
-
mask_downsampler,
|
143 |
-
fuser,
|
144 |
-
position_encoding,
|
145 |
-
in_dim=256, # in_dim of pix_feats
|
146 |
-
):
|
147 |
-
super().__init__()
|
148 |
-
|
149 |
-
self.mask_downsampler = mask_downsampler
|
150 |
-
|
151 |
-
self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
|
152 |
-
self.fuser = fuser
|
153 |
-
self.position_encoding = position_encoding
|
154 |
-
self.out_proj = nn.Identity()
|
155 |
-
if out_dim != in_dim:
|
156 |
-
self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
|
157 |
-
|
158 |
-
def forward(
|
159 |
-
self,
|
160 |
-
pix_feat: torch.Tensor,
|
161 |
-
masks: torch.Tensor,
|
162 |
-
skip_mask_sigmoid: bool = False,
|
163 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
164 |
-
## Process masks
|
165 |
-
# sigmoid, so that less domain shift from gt masks which are bool
|
166 |
-
if not skip_mask_sigmoid:
|
167 |
-
masks = F.sigmoid(masks)
|
168 |
-
masks = self.mask_downsampler(masks)
|
169 |
-
|
170 |
-
## Fuse pix_feats and downsampled masks
|
171 |
-
# in case the visual features are on CPU, cast them to CUDA
|
172 |
-
pix_feat = pix_feat.to(masks.device)
|
173 |
-
|
174 |
-
x = self.pix_feat_proj(pix_feat)
|
175 |
-
x = x + masks
|
176 |
-
x = self.fuser(x)
|
177 |
-
x = self.out_proj(x)
|
178 |
-
|
179 |
-
pos = self.position_encoding(x).to(x.dtype)
|
180 |
-
|
181 |
-
return {"vision_features": x, "vision_pos_enc": [pos]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/modeling/position_encoding.py
DELETED
@@ -1,216 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
import math
|
8 |
-
from typing import Any, Optional, Tuple
|
9 |
-
|
10 |
-
import numpy as np
|
11 |
-
|
12 |
-
import torch
|
13 |
-
from torch import nn
|
14 |
-
|
15 |
-
|
16 |
-
class PositionEmbeddingSine(nn.Module):
|
17 |
-
"""
|
18 |
-
This is a more standard version of the position embedding, very similar to the one
|
19 |
-
used by the Attention is all you need paper, generalized to work on images.
|
20 |
-
"""
|
21 |
-
|
22 |
-
def __init__(
|
23 |
-
self,
|
24 |
-
num_pos_feats,
|
25 |
-
temperature: int = 10000,
|
26 |
-
normalize: bool = True,
|
27 |
-
scale: Optional[float] = None,
|
28 |
-
):
|
29 |
-
super().__init__()
|
30 |
-
assert num_pos_feats % 2 == 0, "Expecting even model width"
|
31 |
-
self.num_pos_feats = num_pos_feats // 2
|
32 |
-
self.temperature = temperature
|
33 |
-
self.normalize = normalize
|
34 |
-
if scale is not None and normalize is False:
|
35 |
-
raise ValueError("normalize should be True if scale is passed")
|
36 |
-
if scale is None:
|
37 |
-
scale = 2 * math.pi
|
38 |
-
self.scale = scale
|
39 |
-
|
40 |
-
self.cache = {}
|
41 |
-
|
42 |
-
def _encode_xy(self, x, y):
|
43 |
-
# The positions are expected to be normalized
|
44 |
-
assert len(x) == len(y) and x.ndim == y.ndim == 1
|
45 |
-
x_embed = x * self.scale
|
46 |
-
y_embed = y * self.scale
|
47 |
-
|
48 |
-
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
49 |
-
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
50 |
-
|
51 |
-
pos_x = x_embed[:, None] / dim_t
|
52 |
-
pos_y = y_embed[:, None] / dim_t
|
53 |
-
pos_x = torch.stack(
|
54 |
-
(pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2
|
55 |
-
).flatten(1)
|
56 |
-
pos_y = torch.stack(
|
57 |
-
(pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2
|
58 |
-
).flatten(1)
|
59 |
-
return pos_x, pos_y
|
60 |
-
|
61 |
-
@torch.no_grad()
|
62 |
-
def encode_boxes(self, x, y, w, h):
|
63 |
-
pos_x, pos_y = self._encode_xy(x, y)
|
64 |
-
pos = torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)
|
65 |
-
return pos
|
66 |
-
|
67 |
-
encode = encode_boxes # Backwards compatibility
|
68 |
-
|
69 |
-
@torch.no_grad()
|
70 |
-
def encode_points(self, x, y, labels):
|
71 |
-
(bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape
|
72 |
-
assert bx == by and nx == ny and bx == bl and nx == nl
|
73 |
-
pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten())
|
74 |
-
pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)
|
75 |
-
pos = torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)
|
76 |
-
return pos
|
77 |
-
|
78 |
-
@torch.no_grad()
|
79 |
-
def forward(self, x: torch.Tensor):
|
80 |
-
cache_key = (x.shape[-2], x.shape[-1])
|
81 |
-
if cache_key in self.cache:
|
82 |
-
return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1)
|
83 |
-
y_embed = (
|
84 |
-
torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device)
|
85 |
-
.view(1, -1, 1)
|
86 |
-
.repeat(x.shape[0], 1, x.shape[-1])
|
87 |
-
)
|
88 |
-
x_embed = (
|
89 |
-
torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device)
|
90 |
-
.view(1, 1, -1)
|
91 |
-
.repeat(x.shape[0], x.shape[-2], 1)
|
92 |
-
)
|
93 |
-
|
94 |
-
if self.normalize:
|
95 |
-
eps = 1e-6
|
96 |
-
y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
|
97 |
-
x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
|
98 |
-
|
99 |
-
dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
|
100 |
-
dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
|
101 |
-
|
102 |
-
pos_x = x_embed[:, :, :, None] / dim_t
|
103 |
-
pos_y = y_embed[:, :, :, None] / dim_t
|
104 |
-
pos_x = torch.stack(
|
105 |
-
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
|
106 |
-
).flatten(3)
|
107 |
-
pos_y = torch.stack(
|
108 |
-
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
|
109 |
-
).flatten(3)
|
110 |
-
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
|
111 |
-
self.cache[cache_key] = pos[0]
|
112 |
-
return pos
|
113 |
-
|
114 |
-
|
115 |
-
class PositionEmbeddingRandom(nn.Module):
|
116 |
-
"""
|
117 |
-
Positional encoding using random spatial frequencies.
|
118 |
-
"""
|
119 |
-
|
120 |
-
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
121 |
-
super().__init__()
|
122 |
-
if scale is None or scale <= 0.0:
|
123 |
-
scale = 1.0
|
124 |
-
self.register_buffer(
|
125 |
-
"positional_encoding_gaussian_matrix",
|
126 |
-
scale * torch.randn((2, num_pos_feats)),
|
127 |
-
)
|
128 |
-
|
129 |
-
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
130 |
-
"""Positionally encode points that are normalized to [0,1]."""
|
131 |
-
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
132 |
-
coords = 2 * coords - 1
|
133 |
-
coords = coords @ self.positional_encoding_gaussian_matrix
|
134 |
-
coords = 2 * np.pi * coords
|
135 |
-
# outputs d_1 x ... x d_n x C shape
|
136 |
-
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
137 |
-
|
138 |
-
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
139 |
-
"""Generate positional encoding for a grid of the specified size."""
|
140 |
-
h, w = size
|
141 |
-
device: Any = self.positional_encoding_gaussian_matrix.device
|
142 |
-
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
143 |
-
y_embed = grid.cumsum(dim=0) - 0.5
|
144 |
-
x_embed = grid.cumsum(dim=1) - 0.5
|
145 |
-
y_embed = y_embed / h
|
146 |
-
x_embed = x_embed / w
|
147 |
-
|
148 |
-
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
149 |
-
return pe.permute(2, 0, 1) # C x H x W
|
150 |
-
|
151 |
-
def forward_with_coords(
|
152 |
-
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
153 |
-
) -> torch.Tensor:
|
154 |
-
"""Positionally encode points that are not normalized to [0,1]."""
|
155 |
-
coords = coords_input.clone()
|
156 |
-
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
157 |
-
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
158 |
-
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
159 |
-
|
160 |
-
|
161 |
-
# Rotary Positional Encoding, adapted from:
|
162 |
-
# 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py
|
163 |
-
# 2. https://github.com/naver-ai/rope-vit
|
164 |
-
# 3. https://github.com/lucidrains/rotary-embedding-torch
|
165 |
-
|
166 |
-
|
167 |
-
def init_t_xy(end_x: int, end_y: int):
|
168 |
-
t = torch.arange(end_x * end_y, dtype=torch.float32)
|
169 |
-
t_x = (t % end_x).float()
|
170 |
-
t_y = torch.div(t, end_x, rounding_mode="floor").float()
|
171 |
-
return t_x, t_y
|
172 |
-
|
173 |
-
|
174 |
-
def compute_axial_cis(dim: int, end_x: int, end_y: int, theta: float = 10000.0):
|
175 |
-
freqs_x = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
|
176 |
-
freqs_y = 1.0 / (theta ** (torch.arange(0, dim, 4)[: (dim // 4)].float() / dim))
|
177 |
-
|
178 |
-
t_x, t_y = init_t_xy(end_x, end_y)
|
179 |
-
freqs_x = torch.outer(t_x, freqs_x)
|
180 |
-
freqs_y = torch.outer(t_y, freqs_y)
|
181 |
-
freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x)
|
182 |
-
freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y)
|
183 |
-
return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1)
|
184 |
-
|
185 |
-
|
186 |
-
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
|
187 |
-
ndim = x.ndim
|
188 |
-
assert 0 <= 1 < ndim
|
189 |
-
assert freqs_cis.shape == (x.shape[-2], x.shape[-1])
|
190 |
-
shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)]
|
191 |
-
return freqs_cis.view(*shape)
|
192 |
-
|
193 |
-
|
194 |
-
def apply_rotary_enc(
|
195 |
-
xq: torch.Tensor,
|
196 |
-
xk: torch.Tensor,
|
197 |
-
freqs_cis: torch.Tensor,
|
198 |
-
repeat_freqs_k: bool = False,
|
199 |
-
):
|
200 |
-
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
201 |
-
xk_ = (
|
202 |
-
torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
203 |
-
if xk.shape[-2] != 0
|
204 |
-
else None
|
205 |
-
)
|
206 |
-
freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
|
207 |
-
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
|
208 |
-
if xk_ is None:
|
209 |
-
# no keys to rotate, due to dropout
|
210 |
-
return xq_out.type_as(xq).to(xq.device), xk
|
211 |
-
# repeat freqs along seq_len dim to match k seq_len
|
212 |
-
if repeat_freqs_k:
|
213 |
-
r = xk_.shape[-2] // xq_.shape[-2]
|
214 |
-
freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1)
|
215 |
-
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
|
216 |
-
return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/modeling/sam/__init__.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
|
|
|
|
|
|
sam2/modeling/sam/mask_decoder.py
DELETED
@@ -1,295 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
from typing import List, Optional, Tuple, Type
|
8 |
-
|
9 |
-
import torch
|
10 |
-
from torch import nn
|
11 |
-
|
12 |
-
from sam2.modeling.sam2_utils import LayerNorm2d, MLP
|
13 |
-
|
14 |
-
|
15 |
-
class MaskDecoder(nn.Module):
|
16 |
-
def __init__(
|
17 |
-
self,
|
18 |
-
*,
|
19 |
-
transformer_dim: int,
|
20 |
-
transformer: nn.Module,
|
21 |
-
num_multimask_outputs: int = 3,
|
22 |
-
activation: Type[nn.Module] = nn.GELU,
|
23 |
-
iou_head_depth: int = 3,
|
24 |
-
iou_head_hidden_dim: int = 256,
|
25 |
-
use_high_res_features: bool = False,
|
26 |
-
iou_prediction_use_sigmoid=False,
|
27 |
-
dynamic_multimask_via_stability=False,
|
28 |
-
dynamic_multimask_stability_delta=0.05,
|
29 |
-
dynamic_multimask_stability_thresh=0.98,
|
30 |
-
pred_obj_scores: bool = False,
|
31 |
-
pred_obj_scores_mlp: bool = False,
|
32 |
-
use_multimask_token_for_obj_ptr: bool = False,
|
33 |
-
) -> None:
|
34 |
-
"""
|
35 |
-
Predicts masks given an image and prompt embeddings, using a
|
36 |
-
transformer architecture.
|
37 |
-
|
38 |
-
Arguments:
|
39 |
-
transformer_dim (int): the channel dimension of the transformer
|
40 |
-
transformer (nn.Module): the transformer used to predict masks
|
41 |
-
num_multimask_outputs (int): the number of masks to predict
|
42 |
-
when disambiguating masks
|
43 |
-
activation (nn.Module): the type of activation to use when
|
44 |
-
upscaling masks
|
45 |
-
iou_head_depth (int): the depth of the MLP used to predict
|
46 |
-
mask quality
|
47 |
-
iou_head_hidden_dim (int): the hidden dimension of the MLP
|
48 |
-
used to predict mask quality
|
49 |
-
"""
|
50 |
-
super().__init__()
|
51 |
-
self.transformer_dim = transformer_dim
|
52 |
-
self.transformer = transformer
|
53 |
-
|
54 |
-
self.num_multimask_outputs = num_multimask_outputs
|
55 |
-
|
56 |
-
self.iou_token = nn.Embedding(1, transformer_dim)
|
57 |
-
self.num_mask_tokens = num_multimask_outputs + 1
|
58 |
-
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
59 |
-
|
60 |
-
self.pred_obj_scores = pred_obj_scores
|
61 |
-
if self.pred_obj_scores:
|
62 |
-
self.obj_score_token = nn.Embedding(1, transformer_dim)
|
63 |
-
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
|
64 |
-
|
65 |
-
self.output_upscaling = nn.Sequential(
|
66 |
-
nn.ConvTranspose2d(
|
67 |
-
transformer_dim, transformer_dim // 4, kernel_size=2, stride=2
|
68 |
-
),
|
69 |
-
LayerNorm2d(transformer_dim // 4),
|
70 |
-
activation(),
|
71 |
-
nn.ConvTranspose2d(
|
72 |
-
transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2
|
73 |
-
),
|
74 |
-
activation(),
|
75 |
-
)
|
76 |
-
self.use_high_res_features = use_high_res_features
|
77 |
-
if use_high_res_features:
|
78 |
-
self.conv_s0 = nn.Conv2d(
|
79 |
-
transformer_dim, transformer_dim // 8, kernel_size=1, stride=1
|
80 |
-
)
|
81 |
-
self.conv_s1 = nn.Conv2d(
|
82 |
-
transformer_dim, transformer_dim // 4, kernel_size=1, stride=1
|
83 |
-
)
|
84 |
-
|
85 |
-
self.output_hypernetworks_mlps = nn.ModuleList(
|
86 |
-
[
|
87 |
-
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
|
88 |
-
for i in range(self.num_mask_tokens)
|
89 |
-
]
|
90 |
-
)
|
91 |
-
|
92 |
-
self.iou_prediction_head = MLP(
|
93 |
-
transformer_dim,
|
94 |
-
iou_head_hidden_dim,
|
95 |
-
self.num_mask_tokens,
|
96 |
-
iou_head_depth,
|
97 |
-
sigmoid_output=iou_prediction_use_sigmoid,
|
98 |
-
)
|
99 |
-
if self.pred_obj_scores:
|
100 |
-
self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
|
101 |
-
if pred_obj_scores_mlp:
|
102 |
-
self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
|
103 |
-
|
104 |
-
# When outputting a single mask, optionally we can dynamically fall back to the best
|
105 |
-
# multimask output token if the single mask output token gives low stability scores.
|
106 |
-
self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
|
107 |
-
self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
|
108 |
-
self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
|
109 |
-
|
110 |
-
def forward(
|
111 |
-
self,
|
112 |
-
image_embeddings: torch.Tensor,
|
113 |
-
image_pe: torch.Tensor,
|
114 |
-
sparse_prompt_embeddings: torch.Tensor,
|
115 |
-
dense_prompt_embeddings: torch.Tensor,
|
116 |
-
multimask_output: bool,
|
117 |
-
repeat_image: bool,
|
118 |
-
high_res_features: Optional[List[torch.Tensor]] = None,
|
119 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
120 |
-
"""
|
121 |
-
Predict masks given image and prompt embeddings.
|
122 |
-
|
123 |
-
Arguments:
|
124 |
-
image_embeddings (torch.Tensor): the embeddings from the image encoder
|
125 |
-
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
|
126 |
-
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
|
127 |
-
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
|
128 |
-
multimask_output (bool): Whether to return multiple masks or a single
|
129 |
-
mask.
|
130 |
-
|
131 |
-
Returns:
|
132 |
-
torch.Tensor: batched predicted masks
|
133 |
-
torch.Tensor: batched predictions of mask quality
|
134 |
-
torch.Tensor: batched SAM token for mask output
|
135 |
-
"""
|
136 |
-
masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
|
137 |
-
image_embeddings=image_embeddings,
|
138 |
-
image_pe=image_pe,
|
139 |
-
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
140 |
-
dense_prompt_embeddings=dense_prompt_embeddings,
|
141 |
-
repeat_image=repeat_image,
|
142 |
-
high_res_features=high_res_features,
|
143 |
-
)
|
144 |
-
|
145 |
-
# Select the correct mask or masks for output
|
146 |
-
if multimask_output:
|
147 |
-
masks = masks[:, 1:, :, :]
|
148 |
-
iou_pred = iou_pred[:, 1:]
|
149 |
-
elif self.dynamic_multimask_via_stability and not self.training:
|
150 |
-
masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
|
151 |
-
else:
|
152 |
-
masks = masks[:, 0:1, :, :]
|
153 |
-
iou_pred = iou_pred[:, 0:1]
|
154 |
-
|
155 |
-
if multimask_output and self.use_multimask_token_for_obj_ptr:
|
156 |
-
sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape
|
157 |
-
else:
|
158 |
-
# Take the mask output token. Here we *always* use the token for single mask output.
|
159 |
-
# At test time, even if we track after 1-click (and using multimask_output=True),
|
160 |
-
# we still take the single mask token here. The rationale is that we always track
|
161 |
-
# after multiple clicks during training, so the past tokens seen during training
|
162 |
-
# are always the single mask token (and we'll let it be the object-memory token).
|
163 |
-
sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape
|
164 |
-
|
165 |
-
# Prepare output
|
166 |
-
return masks, iou_pred, sam_tokens_out, object_score_logits
|
167 |
-
|
168 |
-
def predict_masks(
|
169 |
-
self,
|
170 |
-
image_embeddings: torch.Tensor,
|
171 |
-
image_pe: torch.Tensor,
|
172 |
-
sparse_prompt_embeddings: torch.Tensor,
|
173 |
-
dense_prompt_embeddings: torch.Tensor,
|
174 |
-
repeat_image: bool,
|
175 |
-
high_res_features: Optional[List[torch.Tensor]] = None,
|
176 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
177 |
-
"""Predicts masks. See 'forward' for more details."""
|
178 |
-
# Concatenate output tokens
|
179 |
-
s = 0
|
180 |
-
if self.pred_obj_scores:
|
181 |
-
output_tokens = torch.cat(
|
182 |
-
[
|
183 |
-
self.obj_score_token.weight,
|
184 |
-
self.iou_token.weight,
|
185 |
-
self.mask_tokens.weight,
|
186 |
-
],
|
187 |
-
dim=0,
|
188 |
-
)
|
189 |
-
s = 1
|
190 |
-
else:
|
191 |
-
output_tokens = torch.cat(
|
192 |
-
[self.iou_token.weight, self.mask_tokens.weight], dim=0
|
193 |
-
)
|
194 |
-
output_tokens = output_tokens.unsqueeze(0).expand(
|
195 |
-
sparse_prompt_embeddings.size(0), -1, -1
|
196 |
-
)
|
197 |
-
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
198 |
-
|
199 |
-
# Expand per-image data in batch direction to be per-mask
|
200 |
-
if repeat_image:
|
201 |
-
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
202 |
-
else:
|
203 |
-
assert image_embeddings.shape[0] == tokens.shape[0]
|
204 |
-
src = image_embeddings
|
205 |
-
src = src + dense_prompt_embeddings
|
206 |
-
assert (
|
207 |
-
image_pe.size(0) == 1
|
208 |
-
), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
|
209 |
-
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
210 |
-
b, c, h, w = src.shape
|
211 |
-
|
212 |
-
# Run the transformer
|
213 |
-
hs, src = self.transformer(src, pos_src, tokens)
|
214 |
-
iou_token_out = hs[:, s, :]
|
215 |
-
mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]
|
216 |
-
|
217 |
-
# Upscale mask embeddings and predict masks using the mask tokens
|
218 |
-
src = src.transpose(1, 2).view(b, c, h, w)
|
219 |
-
if not self.use_high_res_features:
|
220 |
-
upscaled_embedding = self.output_upscaling(src)
|
221 |
-
else:
|
222 |
-
dc1, ln1, act1, dc2, act2 = self.output_upscaling
|
223 |
-
feat_s0, feat_s1 = high_res_features
|
224 |
-
upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
|
225 |
-
upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
|
226 |
-
|
227 |
-
hyper_in_list: List[torch.Tensor] = []
|
228 |
-
for i in range(self.num_mask_tokens):
|
229 |
-
hyper_in_list.append(
|
230 |
-
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
|
231 |
-
)
|
232 |
-
hyper_in = torch.stack(hyper_in_list, dim=1)
|
233 |
-
b, c, h, w = upscaled_embedding.shape
|
234 |
-
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
235 |
-
|
236 |
-
# Generate mask quality predictions
|
237 |
-
iou_pred = self.iou_prediction_head(iou_token_out)
|
238 |
-
if self.pred_obj_scores:
|
239 |
-
assert s == 1
|
240 |
-
object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
|
241 |
-
else:
|
242 |
-
# Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
|
243 |
-
object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
|
244 |
-
|
245 |
-
return masks, iou_pred, mask_tokens_out, object_score_logits
|
246 |
-
|
247 |
-
def _get_stability_scores(self, mask_logits):
|
248 |
-
"""
|
249 |
-
Compute stability scores of the mask logits based on the IoU between upper and
|
250 |
-
lower thresholds, similar to https://github.com/fairinternal/onevision/pull/568.
|
251 |
-
"""
|
252 |
-
mask_logits = mask_logits.flatten(-2)
|
253 |
-
stability_delta = self.dynamic_multimask_stability_delta
|
254 |
-
area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
|
255 |
-
area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
|
256 |
-
stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0)
|
257 |
-
return stability_scores
|
258 |
-
|
259 |
-
def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
|
260 |
-
"""
|
261 |
-
When outputting a single mask, if the stability score from the current single-mask
|
262 |
-
output (based on output token 0) falls below a threshold, we instead select from
|
263 |
-
multi-mask outputs (based on output token 1~3) the mask with the highest predicted
|
264 |
-
IoU score. This is intended to ensure a valid mask for both clicking and tracking.
|
265 |
-
"""
|
266 |
-
# The best mask from multimask output tokens (1~3)
|
267 |
-
multimask_logits = all_mask_logits[:, 1:, :, :]
|
268 |
-
multimask_iou_scores = all_iou_scores[:, 1:]
|
269 |
-
best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
|
270 |
-
batch_inds = torch.arange(
|
271 |
-
multimask_iou_scores.size(0), device=all_iou_scores.device
|
272 |
-
)
|
273 |
-
best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
|
274 |
-
best_multimask_logits = best_multimask_logits.unsqueeze(1)
|
275 |
-
best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
|
276 |
-
best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
|
277 |
-
|
278 |
-
# The mask from singlemask output token 0 and its stability score
|
279 |
-
singlemask_logits = all_mask_logits[:, 0:1, :, :]
|
280 |
-
singlemask_iou_scores = all_iou_scores[:, 0:1]
|
281 |
-
stability_scores = self._get_stability_scores(singlemask_logits)
|
282 |
-
is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
|
283 |
-
|
284 |
-
# Dynamically fall back to best multimask output upon low stability scores.
|
285 |
-
mask_logits_out = torch.where(
|
286 |
-
is_stable[..., None, None].expand_as(singlemask_logits),
|
287 |
-
singlemask_logits,
|
288 |
-
best_multimask_logits,
|
289 |
-
)
|
290 |
-
iou_scores_out = torch.where(
|
291 |
-
is_stable.expand_as(singlemask_iou_scores),
|
292 |
-
singlemask_iou_scores,
|
293 |
-
best_multimask_iou_scores,
|
294 |
-
)
|
295 |
-
return mask_logits_out, iou_scores_out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/modeling/sam/prompt_encoder.py
DELETED
@@ -1,182 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
from typing import Optional, Tuple, Type
|
8 |
-
|
9 |
-
import torch
|
10 |
-
from torch import nn
|
11 |
-
|
12 |
-
from sam2.modeling.position_encoding import PositionEmbeddingRandom
|
13 |
-
|
14 |
-
from sam2.modeling.sam2_utils import LayerNorm2d
|
15 |
-
|
16 |
-
|
17 |
-
class PromptEncoder(nn.Module):
|
18 |
-
def __init__(
|
19 |
-
self,
|
20 |
-
embed_dim: int,
|
21 |
-
image_embedding_size: Tuple[int, int],
|
22 |
-
input_image_size: Tuple[int, int],
|
23 |
-
mask_in_chans: int,
|
24 |
-
activation: Type[nn.Module] = nn.GELU,
|
25 |
-
) -> None:
|
26 |
-
"""
|
27 |
-
Encodes prompts for input to SAM's mask decoder.
|
28 |
-
|
29 |
-
Arguments:
|
30 |
-
embed_dim (int): The prompts' embedding dimension
|
31 |
-
image_embedding_size (tuple(int, int)): The spatial size of the
|
32 |
-
image embedding, as (H, W).
|
33 |
-
input_image_size (int): The padded size of the image as input
|
34 |
-
to the image encoder, as (H, W).
|
35 |
-
mask_in_chans (int): The number of hidden channels used for
|
36 |
-
encoding input masks.
|
37 |
-
activation (nn.Module): The activation to use when encoding
|
38 |
-
input masks.
|
39 |
-
"""
|
40 |
-
super().__init__()
|
41 |
-
self.embed_dim = embed_dim
|
42 |
-
self.input_image_size = input_image_size
|
43 |
-
self.image_embedding_size = image_embedding_size
|
44 |
-
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
45 |
-
|
46 |
-
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
47 |
-
point_embeddings = [
|
48 |
-
nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)
|
49 |
-
]
|
50 |
-
self.point_embeddings = nn.ModuleList(point_embeddings)
|
51 |
-
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
52 |
-
|
53 |
-
self.mask_input_size = (
|
54 |
-
4 * image_embedding_size[0],
|
55 |
-
4 * image_embedding_size[1],
|
56 |
-
)
|
57 |
-
self.mask_downscaling = nn.Sequential(
|
58 |
-
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
59 |
-
LayerNorm2d(mask_in_chans // 4),
|
60 |
-
activation(),
|
61 |
-
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
62 |
-
LayerNorm2d(mask_in_chans),
|
63 |
-
activation(),
|
64 |
-
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
65 |
-
)
|
66 |
-
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
67 |
-
|
68 |
-
def get_dense_pe(self) -> torch.Tensor:
|
69 |
-
"""
|
70 |
-
Returns the positional encoding used to encode point prompts,
|
71 |
-
applied to a dense set of points the shape of the image encoding.
|
72 |
-
|
73 |
-
Returns:
|
74 |
-
torch.Tensor: Positional encoding with shape
|
75 |
-
1x(embed_dim)x(embedding_h)x(embedding_w)
|
76 |
-
"""
|
77 |
-
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
78 |
-
|
79 |
-
def _embed_points(
|
80 |
-
self,
|
81 |
-
points: torch.Tensor,
|
82 |
-
labels: torch.Tensor,
|
83 |
-
pad: bool,
|
84 |
-
) -> torch.Tensor:
|
85 |
-
"""Embeds point prompts."""
|
86 |
-
points = points + 0.5 # Shift to center of pixel
|
87 |
-
if pad:
|
88 |
-
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
|
89 |
-
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
90 |
-
points = torch.cat([points, padding_point], dim=1)
|
91 |
-
labels = torch.cat([labels, padding_label], dim=1)
|
92 |
-
point_embedding = self.pe_layer.forward_with_coords(
|
93 |
-
points, self.input_image_size
|
94 |
-
)
|
95 |
-
point_embedding[labels == -1] = 0.0
|
96 |
-
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
97 |
-
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
98 |
-
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
99 |
-
point_embedding[labels == 2] += self.point_embeddings[2].weight
|
100 |
-
point_embedding[labels == 3] += self.point_embeddings[3].weight
|
101 |
-
return point_embedding
|
102 |
-
|
103 |
-
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
104 |
-
"""Embeds box prompts."""
|
105 |
-
boxes = boxes + 0.5 # Shift to center of pixel
|
106 |
-
coords = boxes.reshape(-1, 2, 2)
|
107 |
-
corner_embedding = self.pe_layer.forward_with_coords(
|
108 |
-
coords, self.input_image_size
|
109 |
-
)
|
110 |
-
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
111 |
-
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
112 |
-
return corner_embedding
|
113 |
-
|
114 |
-
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
115 |
-
"""Embeds mask inputs."""
|
116 |
-
mask_embedding = self.mask_downscaling(masks)
|
117 |
-
return mask_embedding
|
118 |
-
|
119 |
-
def _get_batch_size(
|
120 |
-
self,
|
121 |
-
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
122 |
-
boxes: Optional[torch.Tensor],
|
123 |
-
masks: Optional[torch.Tensor],
|
124 |
-
) -> int:
|
125 |
-
"""
|
126 |
-
Gets the batch size of the output given the batch size of the input prompts.
|
127 |
-
"""
|
128 |
-
if points is not None:
|
129 |
-
return points[0].shape[0]
|
130 |
-
elif boxes is not None:
|
131 |
-
return boxes.shape[0]
|
132 |
-
elif masks is not None:
|
133 |
-
return masks.shape[0]
|
134 |
-
else:
|
135 |
-
return 1
|
136 |
-
|
137 |
-
def _get_device(self) -> torch.device:
|
138 |
-
return self.point_embeddings[0].weight.device
|
139 |
-
|
140 |
-
def forward(
|
141 |
-
self,
|
142 |
-
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
143 |
-
boxes: Optional[torch.Tensor],
|
144 |
-
masks: Optional[torch.Tensor],
|
145 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
146 |
-
"""
|
147 |
-
Embeds different types of prompts, returning both sparse and dense
|
148 |
-
embeddings.
|
149 |
-
|
150 |
-
Arguments:
|
151 |
-
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
|
152 |
-
and labels to embed.
|
153 |
-
boxes (torch.Tensor or none): boxes to embed
|
154 |
-
masks (torch.Tensor or none): masks to embed
|
155 |
-
|
156 |
-
Returns:
|
157 |
-
torch.Tensor: sparse embeddings for the points and boxes, with shape
|
158 |
-
BxNx(embed_dim), where N is determined by the number of input points
|
159 |
-
and boxes.
|
160 |
-
torch.Tensor: dense embeddings for the masks, in the shape
|
161 |
-
Bx(embed_dim)x(embed_H)x(embed_W)
|
162 |
-
"""
|
163 |
-
bs = self._get_batch_size(points, boxes, masks)
|
164 |
-
sparse_embeddings = torch.empty(
|
165 |
-
(bs, 0, self.embed_dim), device=self._get_device()
|
166 |
-
)
|
167 |
-
if points is not None:
|
168 |
-
coords, labels = points
|
169 |
-
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
170 |
-
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
171 |
-
if boxes is not None:
|
172 |
-
box_embeddings = self._embed_boxes(boxes)
|
173 |
-
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
174 |
-
|
175 |
-
if masks is not None:
|
176 |
-
dense_embeddings = self._embed_masks(masks)
|
177 |
-
else:
|
178 |
-
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
179 |
-
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
180 |
-
)
|
181 |
-
|
182 |
-
return sparse_embeddings, dense_embeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/modeling/sam/transformer.py
DELETED
@@ -1,329 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
import math
|
8 |
-
import warnings
|
9 |
-
from functools import partial
|
10 |
-
from typing import Tuple, Type
|
11 |
-
|
12 |
-
import torch
|
13 |
-
import torch.nn.functional as F
|
14 |
-
from torch import nn, Tensor
|
15 |
-
|
16 |
-
from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis
|
17 |
-
|
18 |
-
from sam2.modeling.sam2_utils import MLP
|
19 |
-
from sam2.utils.misc import get_sdpa_settings
|
20 |
-
|
21 |
-
warnings.simplefilter(action="ignore", category=FutureWarning)
|
22 |
-
USE_FLASH_ATTN = False
|
23 |
-
MATH_KERNEL_ON = True
|
24 |
-
OLD_GPU = True
|
25 |
-
|
26 |
-
|
27 |
-
class TwoWayTransformer(nn.Module):
|
28 |
-
def __init__(
|
29 |
-
self,
|
30 |
-
depth: int,
|
31 |
-
embedding_dim: int,
|
32 |
-
num_heads: int,
|
33 |
-
mlp_dim: int,
|
34 |
-
activation: Type[nn.Module] = nn.ReLU,
|
35 |
-
attention_downsample_rate: int = 2,
|
36 |
-
) -> None:
|
37 |
-
"""
|
38 |
-
A transformer decoder that attends to an input image using
|
39 |
-
queries whose positional embedding is supplied.
|
40 |
-
|
41 |
-
Args:
|
42 |
-
depth (int): number of layers in the transformer
|
43 |
-
embedding_dim (int): the channel dimension for the input embeddings
|
44 |
-
num_heads (int): the number of heads for multihead attention. Must
|
45 |
-
divide embedding_dim
|
46 |
-
mlp_dim (int): the channel dimension internal to the MLP block
|
47 |
-
activation (nn.Module): the activation to use in the MLP block
|
48 |
-
"""
|
49 |
-
super().__init__()
|
50 |
-
self.depth = depth
|
51 |
-
self.embedding_dim = embedding_dim
|
52 |
-
self.num_heads = num_heads
|
53 |
-
self.mlp_dim = mlp_dim
|
54 |
-
self.layers = nn.ModuleList()
|
55 |
-
|
56 |
-
for i in range(depth):
|
57 |
-
self.layers.append(
|
58 |
-
TwoWayAttentionBlock(
|
59 |
-
embedding_dim=embedding_dim,
|
60 |
-
num_heads=num_heads,
|
61 |
-
mlp_dim=mlp_dim,
|
62 |
-
activation=activation,
|
63 |
-
attention_downsample_rate=attention_downsample_rate,
|
64 |
-
skip_first_layer_pe=(i == 0),
|
65 |
-
)
|
66 |
-
)
|
67 |
-
|
68 |
-
self.final_attn_token_to_image = Attention(
|
69 |
-
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
70 |
-
)
|
71 |
-
self.norm_final_attn = nn.LayerNorm(embedding_dim)
|
72 |
-
|
73 |
-
def forward(
|
74 |
-
self,
|
75 |
-
image_embedding: Tensor,
|
76 |
-
image_pe: Tensor,
|
77 |
-
point_embedding: Tensor,
|
78 |
-
) -> Tuple[Tensor, Tensor]:
|
79 |
-
"""
|
80 |
-
Args:
|
81 |
-
image_embedding (torch.Tensor): image to attend to. Should be shape
|
82 |
-
B x embedding_dim x h x w for any h and w.
|
83 |
-
image_pe (torch.Tensor): the positional encoding to add to the image. Must
|
84 |
-
have the same shape as image_embedding.
|
85 |
-
point_embedding (torch.Tensor): the embedding to add to the query points.
|
86 |
-
Must have shape B x N_points x embedding_dim for any N_points.
|
87 |
-
|
88 |
-
Returns:
|
89 |
-
torch.Tensor: the processed point_embedding
|
90 |
-
torch.Tensor: the processed image_embedding
|
91 |
-
"""
|
92 |
-
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
|
93 |
-
bs, c, h, w = image_embedding.shape
|
94 |
-
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
|
95 |
-
image_pe = image_pe.flatten(2).permute(0, 2, 1)
|
96 |
-
|
97 |
-
# Prepare queries
|
98 |
-
queries = point_embedding
|
99 |
-
keys = image_embedding
|
100 |
-
|
101 |
-
# Apply transformer blocks and final layernorm
|
102 |
-
for layer in self.layers:
|
103 |
-
queries, keys = layer(
|
104 |
-
queries=queries,
|
105 |
-
keys=keys,
|
106 |
-
query_pe=point_embedding,
|
107 |
-
key_pe=image_pe,
|
108 |
-
)
|
109 |
-
|
110 |
-
# Apply the final attention layer from the points to the image
|
111 |
-
q = queries + point_embedding
|
112 |
-
k = keys + image_pe
|
113 |
-
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
|
114 |
-
queries = queries + attn_out
|
115 |
-
queries = self.norm_final_attn(queries)
|
116 |
-
|
117 |
-
return queries, keys
|
118 |
-
|
119 |
-
|
120 |
-
class TwoWayAttentionBlock(nn.Module):
|
121 |
-
def __init__(
|
122 |
-
self,
|
123 |
-
embedding_dim: int,
|
124 |
-
num_heads: int,
|
125 |
-
mlp_dim: int = 2048,
|
126 |
-
activation: Type[nn.Module] = nn.ReLU,
|
127 |
-
attention_downsample_rate: int = 2,
|
128 |
-
skip_first_layer_pe: bool = False,
|
129 |
-
) -> None:
|
130 |
-
"""
|
131 |
-
A transformer block with four layers: (1) self-attention of sparse
|
132 |
-
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
|
133 |
-
block on sparse inputs, and (4) cross attention of dense inputs to sparse
|
134 |
-
inputs.
|
135 |
-
|
136 |
-
Arguments:
|
137 |
-
embedding_dim (int): the channel dimension of the embeddings
|
138 |
-
num_heads (int): the number of heads in the attention layers
|
139 |
-
mlp_dim (int): the hidden dimension of the mlp block
|
140 |
-
activation (nn.Module): the activation of the mlp block
|
141 |
-
skip_first_layer_pe (bool): skip the PE on the first layer
|
142 |
-
"""
|
143 |
-
super().__init__()
|
144 |
-
self.self_attn = Attention(embedding_dim, num_heads)
|
145 |
-
self.norm1 = nn.LayerNorm(embedding_dim)
|
146 |
-
|
147 |
-
self.cross_attn_token_to_image = Attention(
|
148 |
-
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
149 |
-
)
|
150 |
-
self.norm2 = nn.LayerNorm(embedding_dim)
|
151 |
-
|
152 |
-
self.mlp = MLP(
|
153 |
-
embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation
|
154 |
-
)
|
155 |
-
self.norm3 = nn.LayerNorm(embedding_dim)
|
156 |
-
|
157 |
-
self.norm4 = nn.LayerNorm(embedding_dim)
|
158 |
-
self.cross_attn_image_to_token = Attention(
|
159 |
-
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
160 |
-
)
|
161 |
-
|
162 |
-
self.skip_first_layer_pe = skip_first_layer_pe
|
163 |
-
|
164 |
-
def forward(
|
165 |
-
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
|
166 |
-
) -> Tuple[Tensor, Tensor]:
|
167 |
-
# Self attention block
|
168 |
-
if self.skip_first_layer_pe:
|
169 |
-
queries = self.self_attn(q=queries, k=queries, v=queries)
|
170 |
-
else:
|
171 |
-
q = queries + query_pe
|
172 |
-
attn_out = self.self_attn(q=q, k=q, v=queries)
|
173 |
-
queries = queries + attn_out
|
174 |
-
queries = self.norm1(queries)
|
175 |
-
|
176 |
-
# Cross attention block, tokens attending to image embedding
|
177 |
-
q = queries + query_pe
|
178 |
-
k = keys + key_pe
|
179 |
-
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
|
180 |
-
queries = queries + attn_out
|
181 |
-
queries = self.norm2(queries)
|
182 |
-
|
183 |
-
# MLP block
|
184 |
-
mlp_out = self.mlp(queries)
|
185 |
-
queries = queries + mlp_out
|
186 |
-
queries = self.norm3(queries)
|
187 |
-
|
188 |
-
# Cross attention block, image embedding attending to tokens
|
189 |
-
q = queries + query_pe
|
190 |
-
k = keys + key_pe
|
191 |
-
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
|
192 |
-
keys = keys + attn_out
|
193 |
-
keys = self.norm4(keys)
|
194 |
-
|
195 |
-
return queries, keys
|
196 |
-
|
197 |
-
|
198 |
-
class Attention(nn.Module):
|
199 |
-
"""
|
200 |
-
An attention layer that allows for downscaling the size of the embedding
|
201 |
-
after projection to queries, keys, and values.
|
202 |
-
"""
|
203 |
-
|
204 |
-
def __init__(
|
205 |
-
self,
|
206 |
-
embedding_dim: int,
|
207 |
-
num_heads: int,
|
208 |
-
downsample_rate: int = 1,
|
209 |
-
dropout: float = 0.0,
|
210 |
-
kv_in_dim: int = None,
|
211 |
-
) -> None:
|
212 |
-
super().__init__()
|
213 |
-
self.embedding_dim = embedding_dim
|
214 |
-
self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
|
215 |
-
self.internal_dim = embedding_dim // downsample_rate
|
216 |
-
self.num_heads = num_heads
|
217 |
-
assert (
|
218 |
-
self.internal_dim % num_heads == 0
|
219 |
-
), "num_heads must divide embedding_dim."
|
220 |
-
|
221 |
-
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
222 |
-
self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
|
223 |
-
self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
|
224 |
-
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
225 |
-
|
226 |
-
self.dropout_p = dropout
|
227 |
-
|
228 |
-
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
|
229 |
-
b, n, c = x.shape
|
230 |
-
x = x.reshape(b, n, num_heads, c // num_heads)
|
231 |
-
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
|
232 |
-
|
233 |
-
def _recombine_heads(self, x: Tensor) -> Tensor:
|
234 |
-
b, n_heads, n_tokens, c_per_head = x.shape
|
235 |
-
x = x.transpose(1, 2)
|
236 |
-
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
|
237 |
-
|
238 |
-
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
239 |
-
# Input projections
|
240 |
-
q = self.q_proj(q)
|
241 |
-
k = self.k_proj(k)
|
242 |
-
v = self.v_proj(v)
|
243 |
-
|
244 |
-
# Separate into heads
|
245 |
-
q = self._separate_heads(q, self.num_heads)
|
246 |
-
k = self._separate_heads(k, self.num_heads)
|
247 |
-
v = self._separate_heads(v, self.num_heads)
|
248 |
-
|
249 |
-
dropout_p = self.dropout_p if self.training else 0.0
|
250 |
-
# Attention
|
251 |
-
with torch.backends.cuda.sdp_kernel(
|
252 |
-
enable_flash=USE_FLASH_ATTN,
|
253 |
-
# if Flash attention kernel is off, then math kernel needs to be enabled
|
254 |
-
enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON,
|
255 |
-
enable_mem_efficient=OLD_GPU,
|
256 |
-
):
|
257 |
-
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
|
258 |
-
|
259 |
-
out = self._recombine_heads(out)
|
260 |
-
out = self.out_proj(out)
|
261 |
-
|
262 |
-
return out
|
263 |
-
|
264 |
-
|
265 |
-
class RoPEAttention(Attention):
|
266 |
-
"""Attention with rotary position encoding."""
|
267 |
-
|
268 |
-
def __init__(
|
269 |
-
self,
|
270 |
-
*args,
|
271 |
-
rope_theta=10000.0,
|
272 |
-
# whether to repeat q rope to match k length
|
273 |
-
# this is needed for cross-attention to memories
|
274 |
-
rope_k_repeat=False,
|
275 |
-
feat_sizes=(32, 32), # [w, h] for stride 16 feats at 512 resolution
|
276 |
-
**kwargs,
|
277 |
-
):
|
278 |
-
super().__init__(*args, **kwargs)
|
279 |
-
|
280 |
-
self.compute_cis = partial(
|
281 |
-
compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta
|
282 |
-
)
|
283 |
-
freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1])
|
284 |
-
self.freqs_cis = freqs_cis
|
285 |
-
self.rope_k_repeat = rope_k_repeat
|
286 |
-
|
287 |
-
def forward(
|
288 |
-
self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0
|
289 |
-
) -> Tensor:
|
290 |
-
# Input projections
|
291 |
-
q = self.q_proj(q)
|
292 |
-
k = self.k_proj(k)
|
293 |
-
v = self.v_proj(v)
|
294 |
-
|
295 |
-
# Separate into heads
|
296 |
-
q = self._separate_heads(q, self.num_heads)
|
297 |
-
k = self._separate_heads(k, self.num_heads)
|
298 |
-
v = self._separate_heads(v, self.num_heads)
|
299 |
-
|
300 |
-
# Apply rotary position encoding
|
301 |
-
w = h = math.sqrt(q.shape[-2])
|
302 |
-
self.freqs_cis = self.freqs_cis.to(q.device)
|
303 |
-
if self.freqs_cis.shape[0] != q.shape[-2]:
|
304 |
-
self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device)
|
305 |
-
if q.shape[-2] != k.shape[-2]:
|
306 |
-
assert self.rope_k_repeat
|
307 |
-
|
308 |
-
num_k_rope = k.size(-2) - num_k_exclude_rope
|
309 |
-
q, k[:, :, :num_k_rope] = apply_rotary_enc(
|
310 |
-
q,
|
311 |
-
k[:, :, :num_k_rope],
|
312 |
-
freqs_cis=self.freqs_cis,
|
313 |
-
repeat_freqs_k=self.rope_k_repeat,
|
314 |
-
)
|
315 |
-
|
316 |
-
dropout_p = self.dropout_p if self.training else 0.0
|
317 |
-
# Attention
|
318 |
-
with torch.backends.cuda.sdp_kernel(
|
319 |
-
enable_flash=USE_FLASH_ATTN,
|
320 |
-
# if Flash attention kernel is off, then math kernel needs to be enabled
|
321 |
-
enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON,
|
322 |
-
enable_mem_efficient=OLD_GPU,
|
323 |
-
):
|
324 |
-
out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
|
325 |
-
|
326 |
-
out = self._recombine_heads(out)
|
327 |
-
out = self.out_proj(out)
|
328 |
-
|
329 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/modeling/sam2_base.py
DELETED
@@ -1,829 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
import torch
|
8 |
-
import torch.distributed
|
9 |
-
import torch.nn.functional as F
|
10 |
-
|
11 |
-
from torch.nn.init import trunc_normal_
|
12 |
-
|
13 |
-
from sam2.modeling.sam.mask_decoder import MaskDecoder
|
14 |
-
from sam2.modeling.sam.prompt_encoder import PromptEncoder
|
15 |
-
from sam2.modeling.sam.transformer import TwoWayTransformer
|
16 |
-
from sam2.modeling.sam2_utils import get_1d_sine_pe, MLP, select_closest_cond_frames
|
17 |
-
|
18 |
-
# a large negative value as a placeholder score for missing objects
|
19 |
-
NO_OBJ_SCORE = -1024.0
|
20 |
-
|
21 |
-
|
22 |
-
class SAM2Base(torch.nn.Module):
|
23 |
-
def __init__(
|
24 |
-
self,
|
25 |
-
image_encoder,
|
26 |
-
memory_attention,
|
27 |
-
memory_encoder,
|
28 |
-
num_maskmem=7, # default 1 input frame + 6 previous frames
|
29 |
-
image_size=512,
|
30 |
-
backbone_stride=16, # stride of the image backbone output
|
31 |
-
sigmoid_scale_for_mem_enc=1.0, # scale factor for mask sigmoid prob
|
32 |
-
sigmoid_bias_for_mem_enc=0.0, # bias factor for mask sigmoid prob
|
33 |
-
# During evaluation, whether to binarize the sigmoid mask logits on interacted frames with clicks
|
34 |
-
binarize_mask_from_pts_for_mem_enc=False,
|
35 |
-
use_mask_input_as_output_without_sam=False, # on frames with mask input, whether to directly output the input mask without using a SAM prompt encoder + mask decoder
|
36 |
-
# The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit,
|
37 |
-
# we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model
|
38 |
-
# a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM.
|
39 |
-
max_cond_frames_in_attn=-1,
|
40 |
-
# on the first frame, whether to directly add the no-memory embedding to the image feature
|
41 |
-
# (instead of using the transformer encoder)
|
42 |
-
directly_add_no_mem_embed=False,
|
43 |
-
# whether to use high-resolution feature maps in the SAM mask decoder
|
44 |
-
use_high_res_features_in_sam=False,
|
45 |
-
# whether to output multiple (3) masks for the first click on initial conditioning frames
|
46 |
-
multimask_output_in_sam=False,
|
47 |
-
# the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`;
|
48 |
-
# default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points)
|
49 |
-
multimask_min_pt_num=1,
|
50 |
-
multimask_max_pt_num=1,
|
51 |
-
# whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`)
|
52 |
-
multimask_output_for_tracking=False,
|
53 |
-
# Whether to use multimask tokens for obj ptr; Only relevant when both
|
54 |
-
# use_obj_ptrs_in_encoder=True and multimask_output_for_tracking=True
|
55 |
-
use_multimask_token_for_obj_ptr: bool = False,
|
56 |
-
# whether to use sigmoid to restrict ious prediction to [0-1]
|
57 |
-
iou_prediction_use_sigmoid=False,
|
58 |
-
# The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5).
|
59 |
-
# For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of
|
60 |
-
# (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame.
|
61 |
-
memory_temporal_stride_for_eval=1,
|
62 |
-
# if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click
|
63 |
-
# if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames
|
64 |
-
add_all_frames_to_correct_as_cond=False,
|
65 |
-
# whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks)
|
66 |
-
non_overlap_masks_for_mem_enc=False,
|
67 |
-
# whether to cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
|
68 |
-
use_obj_ptrs_in_encoder=False,
|
69 |
-
# the maximum number of object pointers from other frames in encoder cross attention (only relevant when `use_obj_ptrs_in_encoder=True`)
|
70 |
-
max_obj_ptrs_in_encoder=16,
|
71 |
-
# whether to add temporal positional encoding to the object pointers in the encoder (only relevant when `use_obj_ptrs_in_encoder=True`)
|
72 |
-
add_tpos_enc_to_obj_ptrs=True,
|
73 |
-
# whether to add an extra linear projection layer for the temporal positional encoding in the object pointers to avoid potential interference
|
74 |
-
# with spatial positional encoding (only relevant when both `use_obj_ptrs_in_encoder=True` and `add_tpos_enc_to_obj_ptrs=True`)
|
75 |
-
proj_tpos_enc_in_obj_ptrs=False,
|
76 |
-
# whether to only attend to object pointers in the past (before the current frame) in the encoder during evaluation
|
77 |
-
# (only relevant when `use_obj_ptrs_in_encoder=True`; this might avoid pointer information too far in the future to distract the initial tracking)
|
78 |
-
only_obj_ptrs_in_the_past_for_eval=False,
|
79 |
-
# Whether to predict if there is an object in the frame
|
80 |
-
pred_obj_scores: bool = False,
|
81 |
-
# Whether to use an MLP to predict object scores
|
82 |
-
pred_obj_scores_mlp: bool = False,
|
83 |
-
# Only relevant if pred_obj_scores=True and use_obj_ptrs_in_encoder=True;
|
84 |
-
# Whether to have a fixed no obj pointer when there is no object present
|
85 |
-
# or to use it as an additive embedding with obj_ptr produced by decoder
|
86 |
-
fixed_no_obj_ptr: bool = False,
|
87 |
-
# Soft no object, i.e. mix in no_obj_ptr softly,
|
88 |
-
# hope to make recovery easier if there is a mistake and mitigate accumulation of errors
|
89 |
-
soft_no_obj_ptr: bool = False,
|
90 |
-
use_mlp_for_obj_ptr_proj: bool = False,
|
91 |
-
# extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class.
|
92 |
-
sam_mask_decoder_extra_args=None,
|
93 |
-
compile_image_encoder: bool = False,
|
94 |
-
):
|
95 |
-
super().__init__()
|
96 |
-
|
97 |
-
# Part 1: the image backbone
|
98 |
-
self.image_encoder = image_encoder
|
99 |
-
# Use level 0, 1, 2 for high-res setting, or just level 2 for the default setting
|
100 |
-
self.use_high_res_features_in_sam = use_high_res_features_in_sam
|
101 |
-
self.num_feature_levels = 3 if use_high_res_features_in_sam else 1
|
102 |
-
self.use_obj_ptrs_in_encoder = use_obj_ptrs_in_encoder
|
103 |
-
self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
|
104 |
-
if use_obj_ptrs_in_encoder:
|
105 |
-
# A conv layer to downsample the mask prompt to stride 4 (the same stride as
|
106 |
-
# low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale,
|
107 |
-
# so that it can be fed into the SAM mask decoder to generate a pointer.
|
108 |
-
self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
|
109 |
-
self.add_tpos_enc_to_obj_ptrs = add_tpos_enc_to_obj_ptrs
|
110 |
-
if proj_tpos_enc_in_obj_ptrs:
|
111 |
-
assert add_tpos_enc_to_obj_ptrs # these options need to be used together
|
112 |
-
self.proj_tpos_enc_in_obj_ptrs = proj_tpos_enc_in_obj_ptrs
|
113 |
-
self.only_obj_ptrs_in_the_past_for_eval = only_obj_ptrs_in_the_past_for_eval
|
114 |
-
|
115 |
-
# Part 2: memory attention to condition current frame's visual features
|
116 |
-
# with memories (and obj ptrs) from past frames
|
117 |
-
self.memory_attention = memory_attention
|
118 |
-
self.hidden_dim = memory_attention.d_model
|
119 |
-
|
120 |
-
# Part 3: memory encoder for the previous frame's outputs
|
121 |
-
self.memory_encoder = memory_encoder
|
122 |
-
self.mem_dim = self.hidden_dim
|
123 |
-
if hasattr(self.memory_encoder, "out_proj") and hasattr(
|
124 |
-
self.memory_encoder.out_proj, "weight"
|
125 |
-
):
|
126 |
-
# if there is compression of memories along channel dim
|
127 |
-
self.mem_dim = self.memory_encoder.out_proj.weight.shape[0]
|
128 |
-
self.num_maskmem = num_maskmem # Number of memories accessible
|
129 |
-
# Temporal encoding of the memories
|
130 |
-
self.maskmem_tpos_enc = torch.nn.Parameter(
|
131 |
-
torch.zeros(num_maskmem, 1, 1, self.mem_dim)
|
132 |
-
)
|
133 |
-
trunc_normal_(self.maskmem_tpos_enc, std=0.02)
|
134 |
-
# a single token to indicate no memory embedding from previous frames
|
135 |
-
self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
|
136 |
-
self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
|
137 |
-
trunc_normal_(self.no_mem_embed, std=0.02)
|
138 |
-
trunc_normal_(self.no_mem_pos_enc, std=0.02)
|
139 |
-
self.directly_add_no_mem_embed = directly_add_no_mem_embed
|
140 |
-
# Apply sigmoid to the output raw mask logits (to turn them from
|
141 |
-
# range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder
|
142 |
-
self.sigmoid_scale_for_mem_enc = sigmoid_scale_for_mem_enc
|
143 |
-
self.sigmoid_bias_for_mem_enc = sigmoid_bias_for_mem_enc
|
144 |
-
self.binarize_mask_from_pts_for_mem_enc = binarize_mask_from_pts_for_mem_enc
|
145 |
-
self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
|
146 |
-
self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
|
147 |
-
# On frames with mask input, whether to directly output the input mask without
|
148 |
-
# using a SAM prompt encoder + mask decoder
|
149 |
-
self.use_mask_input_as_output_without_sam = use_mask_input_as_output_without_sam
|
150 |
-
self.multimask_output_in_sam = multimask_output_in_sam
|
151 |
-
self.multimask_min_pt_num = multimask_min_pt_num
|
152 |
-
self.multimask_max_pt_num = multimask_max_pt_num
|
153 |
-
self.multimask_output_for_tracking = multimask_output_for_tracking
|
154 |
-
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
|
155 |
-
self.iou_prediction_use_sigmoid = iou_prediction_use_sigmoid
|
156 |
-
|
157 |
-
# Part 4: SAM-style prompt encoder (for both mask and point inputs)
|
158 |
-
# and SAM-style mask decoder for the final mask output
|
159 |
-
self.image_size = image_size
|
160 |
-
self.backbone_stride = backbone_stride
|
161 |
-
self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
|
162 |
-
self.pred_obj_scores = pred_obj_scores
|
163 |
-
self.pred_obj_scores_mlp = pred_obj_scores_mlp
|
164 |
-
self.fixed_no_obj_ptr = fixed_no_obj_ptr
|
165 |
-
self.soft_no_obj_ptr = soft_no_obj_ptr
|
166 |
-
if self.fixed_no_obj_ptr:
|
167 |
-
assert self.pred_obj_scores
|
168 |
-
assert self.use_obj_ptrs_in_encoder
|
169 |
-
if self.pred_obj_scores and self.use_obj_ptrs_in_encoder:
|
170 |
-
self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
|
171 |
-
trunc_normal_(self.no_obj_ptr, std=0.02)
|
172 |
-
self.use_mlp_for_obj_ptr_proj = use_mlp_for_obj_ptr_proj
|
173 |
-
|
174 |
-
self._build_sam_heads()
|
175 |
-
self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
|
176 |
-
self.max_cond_frames_in_attn = max_cond_frames_in_attn
|
177 |
-
|
178 |
-
# Model compilation
|
179 |
-
if compile_image_encoder:
|
180 |
-
# Compile the forward function (not the full module) to allow loading checkpoints.
|
181 |
-
print(
|
182 |
-
"Image encoder compilation is enabled. First forward pass will be slow."
|
183 |
-
)
|
184 |
-
self.image_encoder.forward = torch.compile(
|
185 |
-
self.image_encoder.forward,
|
186 |
-
mode="max-autotune",
|
187 |
-
fullgraph=True,
|
188 |
-
dynamic=False,
|
189 |
-
)
|
190 |
-
|
191 |
-
@property
|
192 |
-
def device(self):
|
193 |
-
return next(self.parameters()).device
|
194 |
-
|
195 |
-
def forward(self, *args, **kwargs):
|
196 |
-
raise NotImplementedError(
|
197 |
-
"Please use the corresponding methods in SAM2VideoPredictor for inference."
|
198 |
-
"See notebooks/video_predictor_example.ipynb for an example."
|
199 |
-
)
|
200 |
-
|
201 |
-
def _build_sam_heads(self):
|
202 |
-
"""Build SAM-style prompt encoder and mask decoder."""
|
203 |
-
self.sam_prompt_embed_dim = self.hidden_dim
|
204 |
-
self.sam_image_embedding_size = self.image_size // self.backbone_stride
|
205 |
-
|
206 |
-
# build PromptEncoder and MaskDecoder from SAM
|
207 |
-
# (their hyperparameters like `mask_in_chans=16` are from SAM code)
|
208 |
-
self.sam_prompt_encoder = PromptEncoder(
|
209 |
-
embed_dim=self.sam_prompt_embed_dim,
|
210 |
-
image_embedding_size=(
|
211 |
-
self.sam_image_embedding_size,
|
212 |
-
self.sam_image_embedding_size,
|
213 |
-
),
|
214 |
-
input_image_size=(self.image_size, self.image_size),
|
215 |
-
mask_in_chans=16,
|
216 |
-
)
|
217 |
-
self.sam_mask_decoder = MaskDecoder(
|
218 |
-
num_multimask_outputs=3,
|
219 |
-
transformer=TwoWayTransformer(
|
220 |
-
depth=2,
|
221 |
-
embedding_dim=self.sam_prompt_embed_dim,
|
222 |
-
mlp_dim=2048,
|
223 |
-
num_heads=8,
|
224 |
-
),
|
225 |
-
transformer_dim=self.sam_prompt_embed_dim,
|
226 |
-
iou_head_depth=3,
|
227 |
-
iou_head_hidden_dim=256,
|
228 |
-
use_high_res_features=self.use_high_res_features_in_sam,
|
229 |
-
iou_prediction_use_sigmoid=self.iou_prediction_use_sigmoid,
|
230 |
-
pred_obj_scores=self.pred_obj_scores,
|
231 |
-
pred_obj_scores_mlp=self.pred_obj_scores_mlp,
|
232 |
-
use_multimask_token_for_obj_ptr=self.use_multimask_token_for_obj_ptr,
|
233 |
-
**(self.sam_mask_decoder_extra_args or {}),
|
234 |
-
)
|
235 |
-
if self.use_obj_ptrs_in_encoder:
|
236 |
-
# a linear projection on SAM output tokens to turn them into object pointers
|
237 |
-
self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
|
238 |
-
if self.use_mlp_for_obj_ptr_proj:
|
239 |
-
self.obj_ptr_proj = MLP(
|
240 |
-
self.hidden_dim, self.hidden_dim, self.hidden_dim, 3
|
241 |
-
)
|
242 |
-
else:
|
243 |
-
self.obj_ptr_proj = torch.nn.Identity()
|
244 |
-
if self.proj_tpos_enc_in_obj_ptrs:
|
245 |
-
# a linear projection on temporal positional encoding in object pointers to
|
246 |
-
# avoid potential interference with spatial positional encoding
|
247 |
-
self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
|
248 |
-
else:
|
249 |
-
self.obj_ptr_tpos_proj = torch.nn.Identity()
|
250 |
-
|
251 |
-
def _forward_sam_heads(
|
252 |
-
self,
|
253 |
-
backbone_features,
|
254 |
-
point_inputs=None,
|
255 |
-
mask_inputs=None,
|
256 |
-
high_res_features=None,
|
257 |
-
multimask_output=False,
|
258 |
-
):
|
259 |
-
"""
|
260 |
-
Forward SAM prompt encoders and mask heads.
|
261 |
-
|
262 |
-
Inputs:
|
263 |
-
- backbone_features: image features of [B, C, H, W] shape
|
264 |
-
- point_inputs: a dictionary with "point_coords" and "point_labels", where
|
265 |
-
1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the
|
266 |
-
absolute pixel-unit coordinate in (x, y) format of the P input points
|
267 |
-
2) "point_labels" has shape [B, P] and int32 dtype, where 1 means
|
268 |
-
positive clicks, 0 means negative clicks, and -1 means padding
|
269 |
-
- mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the
|
270 |
-
same spatial size as the image.
|
271 |
-
- high_res_features: either 1) None or 2) or a list of length 2 containing
|
272 |
-
two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively,
|
273 |
-
which will be used as high-resolution feature maps for SAM decoder.
|
274 |
-
- multimask_output: if it's True, we output 3 candidate masks and their 3
|
275 |
-
corresponding IoU estimates, and if it's False, we output only 1 mask and
|
276 |
-
its corresponding IoU estimate.
|
277 |
-
|
278 |
-
Outputs:
|
279 |
-
- low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if
|
280 |
-
`multimask_output=True` and M = 1 if `multimask_output=False`), the SAM
|
281 |
-
output mask logits (before sigmoid) for the low-resolution masks, with 4x
|
282 |
-
the resolution (1/4 stride) of the input backbone_features.
|
283 |
-
- high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3
|
284 |
-
if `multimask_output=True` and M = 1 if `multimask_output=False`),
|
285 |
-
upsampled from the low-resolution masks, with shape size as the image
|
286 |
-
(stride is 1 pixel).
|
287 |
-
- ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1
|
288 |
-
if `multimask_output=False`), the estimated IoU of each output mask.
|
289 |
-
- low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`.
|
290 |
-
If `multimask_output=True`, it's the mask with the highest IoU estimate.
|
291 |
-
If `multimask_output=False`, it's the same as `low_res_multimasks`.
|
292 |
-
- high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`.
|
293 |
-
If `multimask_output=True`, it's the mask with the highest IoU estimate.
|
294 |
-
If `multimask_output=False`, it's the same as `high_res_multimasks`.
|
295 |
-
- obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted
|
296 |
-
based on the output token from the SAM mask decoder.
|
297 |
-
"""
|
298 |
-
B = backbone_features.size(0)
|
299 |
-
device = backbone_features.device
|
300 |
-
assert backbone_features.size(1) == self.sam_prompt_embed_dim
|
301 |
-
assert backbone_features.size(2) == self.sam_image_embedding_size
|
302 |
-
assert backbone_features.size(3) == self.sam_image_embedding_size
|
303 |
-
|
304 |
-
# a) Handle point prompts
|
305 |
-
if point_inputs is not None:
|
306 |
-
sam_point_coords = point_inputs["point_coords"]
|
307 |
-
sam_point_labels = point_inputs["point_labels"]
|
308 |
-
assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
|
309 |
-
else:
|
310 |
-
# If no points are provide, pad with an empty point (with label -1)
|
311 |
-
sam_point_coords = torch.zeros(B, 1, 2, device=device)
|
312 |
-
sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
|
313 |
-
|
314 |
-
# b) Handle mask prompts
|
315 |
-
if mask_inputs is not None:
|
316 |
-
# If mask_inputs is provided, downsize it into low-res mask input if needed
|
317 |
-
# and feed it as a dense mask prompt into the SAM mask encoder
|
318 |
-
assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
|
319 |
-
if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
|
320 |
-
sam_mask_prompt = F.interpolate(
|
321 |
-
mask_inputs.float(),
|
322 |
-
size=self.sam_prompt_encoder.mask_input_size,
|
323 |
-
align_corners=False,
|
324 |
-
mode="bilinear",
|
325 |
-
antialias=True, # use antialias for downsampling
|
326 |
-
)
|
327 |
-
else:
|
328 |
-
sam_mask_prompt = mask_inputs
|
329 |
-
else:
|
330 |
-
# Otherwise, simply feed None (and SAM's prompt encoder will add
|
331 |
-
# a learned `no_mask_embed` to indicate no mask input in this case).
|
332 |
-
sam_mask_prompt = None
|
333 |
-
|
334 |
-
sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
|
335 |
-
points=(sam_point_coords, sam_point_labels),
|
336 |
-
boxes=None,
|
337 |
-
masks=sam_mask_prompt,
|
338 |
-
)
|
339 |
-
(
|
340 |
-
low_res_multimasks,
|
341 |
-
ious,
|
342 |
-
sam_output_tokens,
|
343 |
-
object_score_logits,
|
344 |
-
) = self.sam_mask_decoder(
|
345 |
-
image_embeddings=backbone_features,
|
346 |
-
image_pe=self.sam_prompt_encoder.get_dense_pe(),
|
347 |
-
sparse_prompt_embeddings=sparse_embeddings,
|
348 |
-
dense_prompt_embeddings=dense_embeddings,
|
349 |
-
multimask_output=multimask_output,
|
350 |
-
repeat_image=False, # the image is already batched
|
351 |
-
high_res_features=high_res_features,
|
352 |
-
)
|
353 |
-
if self.pred_obj_scores:
|
354 |
-
is_obj_appearing = object_score_logits > 0
|
355 |
-
|
356 |
-
# Mask used for spatial memories is always a *hard* choice between obj and no obj,
|
357 |
-
# consistent with the actual mask prediction
|
358 |
-
low_res_multimasks = torch.where(
|
359 |
-
is_obj_appearing[:, None, None],
|
360 |
-
low_res_multimasks,
|
361 |
-
NO_OBJ_SCORE,
|
362 |
-
)
|
363 |
-
|
364 |
-
# convert masks from possibly bfloat16 (or float16) to float32
|
365 |
-
# (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
|
366 |
-
low_res_multimasks = low_res_multimasks.float()
|
367 |
-
high_res_multimasks = F.interpolate(
|
368 |
-
low_res_multimasks,
|
369 |
-
size=(self.image_size, self.image_size),
|
370 |
-
mode="bilinear",
|
371 |
-
align_corners=False,
|
372 |
-
)
|
373 |
-
|
374 |
-
sam_output_token = sam_output_tokens[:, 0]
|
375 |
-
if multimask_output:
|
376 |
-
# take the best mask prediction (with the highest IoU estimation)
|
377 |
-
best_iou_inds = torch.argmax(ious, dim=-1)
|
378 |
-
batch_inds = torch.arange(B, device=device)
|
379 |
-
low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
|
380 |
-
high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
|
381 |
-
if sam_output_tokens.size(1) > 1:
|
382 |
-
sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
|
383 |
-
else:
|
384 |
-
low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
|
385 |
-
|
386 |
-
# Extract object pointer from the SAM output token (with occlusion handling)
|
387 |
-
obj_ptr = self.obj_ptr_proj(sam_output_token)
|
388 |
-
if self.pred_obj_scores:
|
389 |
-
# Allow *soft* no obj ptr, unlike for masks
|
390 |
-
if self.soft_no_obj_ptr:
|
391 |
-
# Only hard possible with gt
|
392 |
-
assert not self.teacher_force_obj_scores_for_mem
|
393 |
-
lambda_is_obj_appearing = object_score_logits.sigmoid()
|
394 |
-
else:
|
395 |
-
lambda_is_obj_appearing = is_obj_appearing.float()
|
396 |
-
|
397 |
-
if self.fixed_no_obj_ptr:
|
398 |
-
obj_ptr = lambda_is_obj_appearing * obj_ptr
|
399 |
-
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
|
400 |
-
|
401 |
-
return (
|
402 |
-
low_res_multimasks,
|
403 |
-
high_res_multimasks,
|
404 |
-
ious,
|
405 |
-
low_res_masks,
|
406 |
-
high_res_masks,
|
407 |
-
obj_ptr,
|
408 |
-
object_score_logits,
|
409 |
-
)
|
410 |
-
|
411 |
-
def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
|
412 |
-
"""
|
413 |
-
Directly turn binary `mask_inputs` into a output mask logits without using SAM.
|
414 |
-
(same input and output shapes as in _forward_sam_heads above).
|
415 |
-
"""
|
416 |
-
# Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid).
|
417 |
-
out_scale, out_bias = 20.0, -10.0 # sigmoid(-10.0)=4.5398e-05
|
418 |
-
mask_inputs_float = mask_inputs.float()
|
419 |
-
high_res_masks = mask_inputs_float * out_scale + out_bias
|
420 |
-
low_res_masks = F.interpolate(
|
421 |
-
high_res_masks,
|
422 |
-
size=(high_res_masks.size(-2) // 4, high_res_masks.size(-1) // 4),
|
423 |
-
align_corners=False,
|
424 |
-
mode="bilinear",
|
425 |
-
antialias=True, # use antialias for downsampling
|
426 |
-
)
|
427 |
-
# a dummy IoU prediction of all 1's under mask input
|
428 |
-
ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
|
429 |
-
if not self.use_obj_ptrs_in_encoder:
|
430 |
-
# all zeros as a dummy object pointer (of shape [B, C])
|
431 |
-
obj_ptr = torch.zeros(
|
432 |
-
mask_inputs.size(0), self.hidden_dim, device=mask_inputs.device
|
433 |
-
)
|
434 |
-
else:
|
435 |
-
# produce an object pointer using the SAM decoder from the mask input
|
436 |
-
_, _, _, _, _, obj_ptr, _ = self._forward_sam_heads(
|
437 |
-
backbone_features=backbone_features,
|
438 |
-
mask_inputs=self.mask_downsample(mask_inputs_float),
|
439 |
-
high_res_features=high_res_features,
|
440 |
-
)
|
441 |
-
# In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem;
|
442 |
-
# Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying
|
443 |
-
# on the object_scores from the SAM decoder.
|
444 |
-
is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
|
445 |
-
is_obj_appearing = is_obj_appearing[..., None]
|
446 |
-
lambda_is_obj_appearing = is_obj_appearing.float()
|
447 |
-
object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
|
448 |
-
if self.pred_obj_scores:
|
449 |
-
if self.fixed_no_obj_ptr:
|
450 |
-
obj_ptr = lambda_is_obj_appearing * obj_ptr
|
451 |
-
obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
|
452 |
-
|
453 |
-
return (
|
454 |
-
low_res_masks,
|
455 |
-
high_res_masks,
|
456 |
-
ious,
|
457 |
-
low_res_masks,
|
458 |
-
high_res_masks,
|
459 |
-
obj_ptr,
|
460 |
-
object_score_logits,
|
461 |
-
)
|
462 |
-
|
463 |
-
def forward_image(self, img_batch: torch.Tensor):
|
464 |
-
"""Get the image feature on the input batch."""
|
465 |
-
backbone_out = self.image_encoder(img_batch)
|
466 |
-
if self.use_high_res_features_in_sam:
|
467 |
-
# precompute projected level 0 and level 1 features in SAM decoder
|
468 |
-
# to avoid running it again on every SAM click
|
469 |
-
backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(
|
470 |
-
backbone_out["backbone_fpn"][0]
|
471 |
-
)
|
472 |
-
backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(
|
473 |
-
backbone_out["backbone_fpn"][1]
|
474 |
-
)
|
475 |
-
return backbone_out
|
476 |
-
|
477 |
-
def _prepare_backbone_features(self, backbone_out):
|
478 |
-
"""Prepare and flatten visual features."""
|
479 |
-
backbone_out = backbone_out.copy()
|
480 |
-
assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"])
|
481 |
-
assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels
|
482 |
-
|
483 |
-
feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :]
|
484 |
-
vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :]
|
485 |
-
|
486 |
-
feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
|
487 |
-
# flatten NxCxHxW to HWxNxC
|
488 |
-
vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
|
489 |
-
vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]
|
490 |
-
|
491 |
-
return backbone_out, vision_feats, vision_pos_embeds, feat_sizes
|
492 |
-
|
493 |
-
def _prepare_memory_conditioned_features(
|
494 |
-
self,
|
495 |
-
frame_idx,
|
496 |
-
is_init_cond_frame,
|
497 |
-
current_vision_feats,
|
498 |
-
current_vision_pos_embeds,
|
499 |
-
feat_sizes,
|
500 |
-
output_dict,
|
501 |
-
num_frames,
|
502 |
-
track_in_reverse=False, # tracking in reverse time order (for demo usage)
|
503 |
-
):
|
504 |
-
"""Fuse the current frame's visual feature map with previous memory."""
|
505 |
-
B = current_vision_feats[-1].size(1) # batch size on this frame
|
506 |
-
C = self.hidden_dim
|
507 |
-
H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
|
508 |
-
device = current_vision_feats[-1].device
|
509 |
-
# The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images.
|
510 |
-
# In this case, we skip the fusion with any memory.
|
511 |
-
if self.num_maskmem == 0: # Disable memory and skip fusion
|
512 |
-
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
|
513 |
-
return pix_feat
|
514 |
-
|
515 |
-
num_obj_ptr_tokens = 0
|
516 |
-
# Step 1: condition the visual features of the current frame on previous memories
|
517 |
-
if not is_init_cond_frame:
|
518 |
-
# Retrieve the memories encoded with the maskmem backbone
|
519 |
-
to_cat_memory, to_cat_memory_pos_embed = [], []
|
520 |
-
# Add conditioning frames's output first (all cond frames have t_pos=0 for
|
521 |
-
# when getting temporal positional embedding below)
|
522 |
-
assert len(output_dict["cond_frame_outputs"]) > 0
|
523 |
-
# Select a maximum number of temporally closest cond frames for cross attention
|
524 |
-
cond_outputs = output_dict["cond_frame_outputs"]
|
525 |
-
selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames(
|
526 |
-
frame_idx, cond_outputs, self.max_cond_frames_in_attn
|
527 |
-
)
|
528 |
-
t_pos_and_prevs = [(0, out) for out in selected_cond_outputs.values()]
|
529 |
-
# Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory
|
530 |
-
# the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
|
531 |
-
# We also allow taking the memory frame non-consecutively (with r>1), in which case
|
532 |
-
# we take (self.num_maskmem - 2) frames among every r-th frames plus the last frame.
|
533 |
-
r = self.memory_temporal_stride_for_eval
|
534 |
-
for t_pos in range(1, self.num_maskmem):
|
535 |
-
t_rel = self.num_maskmem - t_pos # how many frames before current frame
|
536 |
-
if t_rel == 1:
|
537 |
-
# for t_rel == 1, we take the last frame (regardless of r)
|
538 |
-
if not track_in_reverse:
|
539 |
-
# the frame immediately before this frame (i.e. frame_idx - 1)
|
540 |
-
prev_frame_idx = frame_idx - t_rel
|
541 |
-
else:
|
542 |
-
# the frame immediately after this frame (i.e. frame_idx + 1)
|
543 |
-
prev_frame_idx = frame_idx + t_rel
|
544 |
-
else:
|
545 |
-
# for t_rel >= 2, we take the memory frame from every r-th frames
|
546 |
-
if not track_in_reverse:
|
547 |
-
# first find the nearest frame among every r-th frames before this frame
|
548 |
-
# for r=1, this would be (frame_idx - 2)
|
549 |
-
prev_frame_idx = ((frame_idx - 2) // r) * r
|
550 |
-
# then seek further among every r-th frames
|
551 |
-
prev_frame_idx = prev_frame_idx - (t_rel - 2) * r
|
552 |
-
else:
|
553 |
-
# first find the nearest frame among every r-th frames after this frame
|
554 |
-
# for r=1, this would be (frame_idx + 2)
|
555 |
-
prev_frame_idx = -(-(frame_idx + 2) // r) * r
|
556 |
-
# then seek further among every r-th frames
|
557 |
-
prev_frame_idx = prev_frame_idx + (t_rel - 2) * r
|
558 |
-
out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None)
|
559 |
-
if out is None:
|
560 |
-
# If an unselected conditioning frame is among the last (self.num_maskmem - 1)
|
561 |
-
# frames, we still attend to it as if it's a non-conditioning frame.
|
562 |
-
out = unselected_cond_outputs.get(prev_frame_idx, None)
|
563 |
-
t_pos_and_prevs.append((t_pos, out))
|
564 |
-
|
565 |
-
for t_pos, prev in t_pos_and_prevs:
|
566 |
-
if prev is None:
|
567 |
-
continue # skip padding frames
|
568 |
-
# "maskmem_features" might have been offloaded to CPU in demo use cases,
|
569 |
-
# so we load it back to GPU (it's a no-op if it's already on GPU).
|
570 |
-
feats = prev["maskmem_features"].cuda(non_blocking=True)
|
571 |
-
to_cat_memory.append(feats.flatten(2).permute(2, 0, 1))
|
572 |
-
# Spatial positional encoding (it might have been offloaded to CPU in eval)
|
573 |
-
maskmem_enc = prev["maskmem_pos_enc"][-1].cuda()
|
574 |
-
maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
|
575 |
-
# Temporal positional encoding
|
576 |
-
maskmem_enc = (
|
577 |
-
maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t_pos - 1]
|
578 |
-
)
|
579 |
-
to_cat_memory_pos_embed.append(maskmem_enc)
|
580 |
-
|
581 |
-
# Construct the list of past object pointers
|
582 |
-
if self.use_obj_ptrs_in_encoder:
|
583 |
-
max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
|
584 |
-
# First add those object pointers from selected conditioning frames
|
585 |
-
# (optionally, only include object pointers in the past during evaluation)
|
586 |
-
if not self.training and self.only_obj_ptrs_in_the_past_for_eval:
|
587 |
-
ptr_cond_outputs = {
|
588 |
-
t: out
|
589 |
-
for t, out in selected_cond_outputs.items()
|
590 |
-
if (t >= frame_idx if track_in_reverse else t <= frame_idx)
|
591 |
-
}
|
592 |
-
else:
|
593 |
-
ptr_cond_outputs = selected_cond_outputs
|
594 |
-
pos_and_ptrs = [
|
595 |
-
# Temporal pos encoding contains how far away each pointer is from current frame
|
596 |
-
(abs(frame_idx - t), out["obj_ptr"])
|
597 |
-
for t, out in ptr_cond_outputs.items()
|
598 |
-
]
|
599 |
-
# Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
|
600 |
-
for t_diff in range(1, max_obj_ptrs_in_encoder):
|
601 |
-
t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff
|
602 |
-
if t < 0 or (num_frames is not None and t >= num_frames):
|
603 |
-
break
|
604 |
-
out = output_dict["non_cond_frame_outputs"].get(
|
605 |
-
t, unselected_cond_outputs.get(t, None)
|
606 |
-
)
|
607 |
-
if out is not None:
|
608 |
-
pos_and_ptrs.append((t_diff, out["obj_ptr"]))
|
609 |
-
# If we have at least one object pointer, add them to the across attention
|
610 |
-
if len(pos_and_ptrs) > 0:
|
611 |
-
pos_list, ptrs_list = zip(*pos_and_ptrs)
|
612 |
-
# stack object pointers along dim=0 into [ptr_seq_len, B, C] shape
|
613 |
-
obj_ptrs = torch.stack(ptrs_list, dim=0)
|
614 |
-
# a temporal positional embedding based on how far each object pointer is from
|
615 |
-
# the current frame (sine embedding normalized by the max pointer num).
|
616 |
-
if self.add_tpos_enc_to_obj_ptrs:
|
617 |
-
t_diff_max = max_obj_ptrs_in_encoder - 1
|
618 |
-
tpos_dim = C if self.proj_tpos_enc_in_obj_ptrs else self.mem_dim
|
619 |
-
obj_pos = torch.tensor(pos_list, device=device)
|
620 |
-
obj_pos = get_1d_sine_pe(obj_pos / t_diff_max, dim=tpos_dim)
|
621 |
-
obj_pos = self.obj_ptr_tpos_proj(obj_pos)
|
622 |
-
obj_pos = obj_pos.unsqueeze(1).expand(-1, B, self.mem_dim)
|
623 |
-
else:
|
624 |
-
obj_pos = obj_ptrs.new_zeros(len(pos_list), B, self.mem_dim)
|
625 |
-
if self.mem_dim < C:
|
626 |
-
# split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
|
627 |
-
obj_ptrs = obj_ptrs.reshape(
|
628 |
-
-1, B, C // self.mem_dim, self.mem_dim
|
629 |
-
)
|
630 |
-
obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
|
631 |
-
obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
|
632 |
-
to_cat_memory.append(obj_ptrs)
|
633 |
-
to_cat_memory_pos_embed.append(obj_pos)
|
634 |
-
num_obj_ptr_tokens = obj_ptrs.shape[0]
|
635 |
-
else:
|
636 |
-
num_obj_ptr_tokens = 0
|
637 |
-
else:
|
638 |
-
# for initial conditioning frames, encode them without using any previous memory
|
639 |
-
if self.directly_add_no_mem_embed:
|
640 |
-
# directly add no-mem embedding (instead of using the transformer encoder)
|
641 |
-
pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
|
642 |
-
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
|
643 |
-
return pix_feat_with_mem
|
644 |
-
|
645 |
-
# Use a dummy token on the first frame (to avoid emtpy memory input to tranformer encoder)
|
646 |
-
to_cat_memory = [self.no_mem_embed.expand(1, B, self.mem_dim)]
|
647 |
-
to_cat_memory_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]
|
648 |
-
|
649 |
-
# Step 2: Concatenate the memories and forward through the transformer encoder
|
650 |
-
memory = torch.cat(to_cat_memory, dim=0)
|
651 |
-
memory_pos_embed = torch.cat(to_cat_memory_pos_embed, dim=0)
|
652 |
-
|
653 |
-
pix_feat_with_mem = self.memory_attention(
|
654 |
-
curr=current_vision_feats,
|
655 |
-
curr_pos=current_vision_pos_embeds,
|
656 |
-
memory=memory,
|
657 |
-
memory_pos=memory_pos_embed,
|
658 |
-
num_obj_ptr_tokens=num_obj_ptr_tokens,
|
659 |
-
)
|
660 |
-
# reshape the output (HW)BC => BCHW
|
661 |
-
pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
|
662 |
-
return pix_feat_with_mem
|
663 |
-
|
664 |
-
def _encode_new_memory(
|
665 |
-
self,
|
666 |
-
current_vision_feats,
|
667 |
-
feat_sizes,
|
668 |
-
pred_masks_high_res,
|
669 |
-
is_mask_from_pts,
|
670 |
-
):
|
671 |
-
"""Encode the current image and its prediction into a memory feature."""
|
672 |
-
B = current_vision_feats[-1].size(1) # batch size on this frame
|
673 |
-
C = self.hidden_dim
|
674 |
-
H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
|
675 |
-
# top-level feature, (HW)BC => BCHW
|
676 |
-
pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
|
677 |
-
if self.non_overlap_masks_for_mem_enc and not self.training:
|
678 |
-
# optionally, apply non-overlapping constraints to the masks (it's applied
|
679 |
-
# in the batch dimension and should only be used during eval, where all
|
680 |
-
# the objects come from the same video under batch size 1).
|
681 |
-
pred_masks_high_res = self._apply_non_overlapping_constraints(
|
682 |
-
pred_masks_high_res
|
683 |
-
)
|
684 |
-
# scale the raw mask logits with a temperature before applying sigmoid
|
685 |
-
binarize = self.binarize_mask_from_pts_for_mem_enc and is_mask_from_pts
|
686 |
-
if binarize and not self.training:
|
687 |
-
mask_for_mem = (pred_masks_high_res > 0).float()
|
688 |
-
else:
|
689 |
-
# apply sigmoid on the raw mask logits to turn them into range (0, 1)
|
690 |
-
mask_for_mem = torch.sigmoid(pred_masks_high_res)
|
691 |
-
# apply scale and bias terms to the sigmoid probabilities
|
692 |
-
if self.sigmoid_scale_for_mem_enc != 1.0:
|
693 |
-
mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
|
694 |
-
if self.sigmoid_bias_for_mem_enc != 0.0:
|
695 |
-
mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
|
696 |
-
maskmem_out = self.memory_encoder(
|
697 |
-
pix_feat, mask_for_mem, skip_mask_sigmoid=True # sigmoid already applied
|
698 |
-
)
|
699 |
-
maskmem_features = maskmem_out["vision_features"]
|
700 |
-
maskmem_pos_enc = maskmem_out["vision_pos_enc"]
|
701 |
-
|
702 |
-
return maskmem_features, maskmem_pos_enc
|
703 |
-
|
704 |
-
def track_step(
|
705 |
-
self,
|
706 |
-
frame_idx,
|
707 |
-
is_init_cond_frame,
|
708 |
-
current_vision_feats,
|
709 |
-
current_vision_pos_embeds,
|
710 |
-
feat_sizes,
|
711 |
-
point_inputs,
|
712 |
-
mask_inputs,
|
713 |
-
output_dict,
|
714 |
-
num_frames,
|
715 |
-
track_in_reverse=False, # tracking in reverse time order (for demo usage)
|
716 |
-
# Whether to run the memory encoder on the predicted masks. Sometimes we might want
|
717 |
-
# to skip the memory encoder with `run_mem_encoder=False`. For example,
|
718 |
-
# in demo we might call `track_step` multiple times for each user click,
|
719 |
-
# and only encode the memory when the user finalizes their clicks. And in ablation
|
720 |
-
# settings like SAM training on static images, we don't need the memory encoder.
|
721 |
-
run_mem_encoder=True,
|
722 |
-
# The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
|
723 |
-
prev_sam_mask_logits=None,
|
724 |
-
):
|
725 |
-
current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
|
726 |
-
# High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
|
727 |
-
if len(current_vision_feats) > 1:
|
728 |
-
high_res_features = [
|
729 |
-
x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
|
730 |
-
for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
|
731 |
-
]
|
732 |
-
else:
|
733 |
-
high_res_features = None
|
734 |
-
if mask_inputs is not None and self.use_mask_input_as_output_without_sam:
|
735 |
-
# When use_mask_input_as_output_without_sam=True, we directly output the mask input
|
736 |
-
# (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
|
737 |
-
pix_feat = current_vision_feats[-1].permute(1, 2, 0)
|
738 |
-
pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
|
739 |
-
sam_outputs = self._use_mask_as_output(
|
740 |
-
pix_feat, high_res_features, mask_inputs
|
741 |
-
)
|
742 |
-
else:
|
743 |
-
# fused the visual feature with previous memory features in the memory bank
|
744 |
-
pix_feat_with_mem = self._prepare_memory_conditioned_features(
|
745 |
-
frame_idx=frame_idx,
|
746 |
-
is_init_cond_frame=is_init_cond_frame,
|
747 |
-
current_vision_feats=current_vision_feats[-1:],
|
748 |
-
current_vision_pos_embeds=current_vision_pos_embeds[-1:],
|
749 |
-
feat_sizes=feat_sizes[-1:],
|
750 |
-
output_dict=output_dict,
|
751 |
-
num_frames=num_frames,
|
752 |
-
track_in_reverse=track_in_reverse,
|
753 |
-
)
|
754 |
-
# apply SAM-style segmentation head
|
755 |
-
# here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
|
756 |
-
# e.g. in demo where such logits come from earlier interaction instead of correction sampling
|
757 |
-
# (in this case, any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
|
758 |
-
if prev_sam_mask_logits is not None:
|
759 |
-
assert point_inputs is not None and mask_inputs is None
|
760 |
-
mask_inputs = prev_sam_mask_logits
|
761 |
-
multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
|
762 |
-
sam_outputs = self._forward_sam_heads(
|
763 |
-
backbone_features=pix_feat_with_mem,
|
764 |
-
point_inputs=point_inputs,
|
765 |
-
mask_inputs=mask_inputs,
|
766 |
-
high_res_features=high_res_features,
|
767 |
-
multimask_output=multimask_output,
|
768 |
-
)
|
769 |
-
(
|
770 |
-
_,
|
771 |
-
_,
|
772 |
-
_,
|
773 |
-
low_res_masks,
|
774 |
-
high_res_masks,
|
775 |
-
obj_ptr,
|
776 |
-
_,
|
777 |
-
) = sam_outputs
|
778 |
-
|
779 |
-
current_out["pred_masks"] = low_res_masks
|
780 |
-
current_out["pred_masks_high_res"] = high_res_masks
|
781 |
-
current_out["obj_ptr"] = obj_ptr
|
782 |
-
|
783 |
-
# Finally run the memory encoder on the predicted mask to encode
|
784 |
-
# it into a new memory feature (that can be used in future frames)
|
785 |
-
if run_mem_encoder and self.num_maskmem > 0:
|
786 |
-
high_res_masks_for_mem_enc = high_res_masks
|
787 |
-
maskmem_features, maskmem_pos_enc = self._encode_new_memory(
|
788 |
-
current_vision_feats=current_vision_feats,
|
789 |
-
feat_sizes=feat_sizes,
|
790 |
-
pred_masks_high_res=high_res_masks_for_mem_enc,
|
791 |
-
is_mask_from_pts=(point_inputs is not None),
|
792 |
-
)
|
793 |
-
current_out["maskmem_features"] = maskmem_features
|
794 |
-
current_out["maskmem_pos_enc"] = maskmem_pos_enc
|
795 |
-
else:
|
796 |
-
current_out["maskmem_features"] = None
|
797 |
-
current_out["maskmem_pos_enc"] = None
|
798 |
-
|
799 |
-
return current_out
|
800 |
-
|
801 |
-
def _use_multimask(self, is_init_cond_frame, point_inputs):
|
802 |
-
"""Whether to use multimask output in the SAM head."""
|
803 |
-
num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1)
|
804 |
-
multimask_output = (
|
805 |
-
self.multimask_output_in_sam
|
806 |
-
and (is_init_cond_frame or self.multimask_output_for_tracking)
|
807 |
-
and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
|
808 |
-
)
|
809 |
-
return multimask_output
|
810 |
-
|
811 |
-
def _apply_non_overlapping_constraints(self, pred_masks):
|
812 |
-
"""
|
813 |
-
Apply non-overlapping constraints to the object scores in pred_masks. Here we
|
814 |
-
keep only the highest scoring object at each spatial location in pred_masks.
|
815 |
-
"""
|
816 |
-
batch_size = pred_masks.size(0)
|
817 |
-
if batch_size == 1:
|
818 |
-
return pred_masks
|
819 |
-
|
820 |
-
device = pred_masks.device
|
821 |
-
# "max_obj_inds": object index of the object with the highest score at each location
|
822 |
-
max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
|
823 |
-
# "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks`
|
824 |
-
batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
|
825 |
-
keep = max_obj_inds == batch_obj_inds
|
826 |
-
# suppress overlapping regions' scores below -10.0 so that the foreground regions
|
827 |
-
# don't overlap (here sigmoid(-10.0)=4.5398e-05)
|
828 |
-
pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
|
829 |
-
return pred_masks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/modeling/sam2_utils.py
DELETED
@@ -1,149 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
|
8 |
-
import copy
|
9 |
-
|
10 |
-
import torch
|
11 |
-
import torch.nn as nn
|
12 |
-
import torch.nn.functional as F
|
13 |
-
|
14 |
-
|
15 |
-
def select_closest_cond_frames(frame_idx, cond_frame_outputs, max_cond_frame_num):
|
16 |
-
"""
|
17 |
-
Select up to `max_cond_frame_num` conditioning frames from `cond_frame_outputs`
|
18 |
-
that are temporally closest to the current frame at `frame_idx`. Here, we take
|
19 |
-
- a) the closest conditioning frame before `frame_idx` (if any);
|
20 |
-
- b) the closest conditioning frame after `frame_idx` (if any);
|
21 |
-
- c) any other temporally closest conditioning frames until reaching a total
|
22 |
-
of `max_cond_frame_num` conditioning frames.
|
23 |
-
|
24 |
-
Outputs:
|
25 |
-
- selected_outputs: selected items (keys & values) from `cond_frame_outputs`.
|
26 |
-
- unselected_outputs: items (keys & values) not selected in `cond_frame_outputs`.
|
27 |
-
"""
|
28 |
-
if max_cond_frame_num == -1 or len(cond_frame_outputs) <= max_cond_frame_num:
|
29 |
-
selected_outputs = cond_frame_outputs
|
30 |
-
unselected_outputs = {}
|
31 |
-
else:
|
32 |
-
assert max_cond_frame_num >= 2, "we should allow using 2+ conditioning frames"
|
33 |
-
selected_outputs = {}
|
34 |
-
|
35 |
-
# the closest conditioning frame before `frame_idx` (if any)
|
36 |
-
idx_before = max((t for t in cond_frame_outputs if t < frame_idx), default=None)
|
37 |
-
if idx_before is not None:
|
38 |
-
selected_outputs[idx_before] = cond_frame_outputs[idx_before]
|
39 |
-
|
40 |
-
# the closest conditioning frame after `frame_idx` (if any)
|
41 |
-
idx_after = min((t for t in cond_frame_outputs if t >= frame_idx), default=None)
|
42 |
-
if idx_after is not None:
|
43 |
-
selected_outputs[idx_after] = cond_frame_outputs[idx_after]
|
44 |
-
|
45 |
-
# add other temporally closest conditioning frames until reaching a total
|
46 |
-
# of `max_cond_frame_num` conditioning frames.
|
47 |
-
num_remain = max_cond_frame_num - len(selected_outputs)
|
48 |
-
inds_remain = sorted(
|
49 |
-
(t for t in cond_frame_outputs if t not in selected_outputs),
|
50 |
-
key=lambda x: abs(x - frame_idx),
|
51 |
-
)[:num_remain]
|
52 |
-
selected_outputs.update((t, cond_frame_outputs[t]) for t in inds_remain)
|
53 |
-
unselected_outputs = {
|
54 |
-
t: v for t, v in cond_frame_outputs.items() if t not in selected_outputs
|
55 |
-
}
|
56 |
-
|
57 |
-
return selected_outputs, unselected_outputs
|
58 |
-
|
59 |
-
|
60 |
-
def get_1d_sine_pe(pos_inds, dim, temperature=10000):
|
61 |
-
"""
|
62 |
-
Get 1D sine positional embedding as in the original Transformer paper.
|
63 |
-
"""
|
64 |
-
pe_dim = dim // 2
|
65 |
-
dim_t = torch.arange(pe_dim, dtype=torch.float32, device=pos_inds.device)
|
66 |
-
dim_t = temperature ** (2 * (dim_t // 2) / pe_dim)
|
67 |
-
|
68 |
-
pos_embed = pos_inds.unsqueeze(-1) / dim_t
|
69 |
-
pos_embed = torch.cat([pos_embed.sin(), pos_embed.cos()], dim=-1)
|
70 |
-
return pos_embed
|
71 |
-
|
72 |
-
|
73 |
-
def get_activation_fn(activation):
|
74 |
-
"""Return an activation function given a string"""
|
75 |
-
if activation == "relu":
|
76 |
-
return F.relu
|
77 |
-
if activation == "gelu":
|
78 |
-
return F.gelu
|
79 |
-
if activation == "glu":
|
80 |
-
return F.glu
|
81 |
-
raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
|
82 |
-
|
83 |
-
|
84 |
-
def get_clones(module, N):
|
85 |
-
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
86 |
-
|
87 |
-
|
88 |
-
class DropPath(nn.Module):
|
89 |
-
# adapted from https://github.com/huggingface/pytorch-image-models/blob/main/timm/layers/drop.py
|
90 |
-
def __init__(self, drop_prob=0.0, scale_by_keep=True):
|
91 |
-
super(DropPath, self).__init__()
|
92 |
-
self.drop_prob = drop_prob
|
93 |
-
self.scale_by_keep = scale_by_keep
|
94 |
-
|
95 |
-
def forward(self, x):
|
96 |
-
if self.drop_prob == 0.0 or not self.training:
|
97 |
-
return x
|
98 |
-
keep_prob = 1 - self.drop_prob
|
99 |
-
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
|
100 |
-
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
101 |
-
if keep_prob > 0.0 and self.scale_by_keep:
|
102 |
-
random_tensor.div_(keep_prob)
|
103 |
-
return x * random_tensor
|
104 |
-
|
105 |
-
|
106 |
-
# Lightly adapted from
|
107 |
-
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
|
108 |
-
class MLP(nn.Module):
|
109 |
-
def __init__(
|
110 |
-
self,
|
111 |
-
input_dim: int,
|
112 |
-
hidden_dim: int,
|
113 |
-
output_dim: int,
|
114 |
-
num_layers: int,
|
115 |
-
activation: nn.Module = nn.ReLU,
|
116 |
-
sigmoid_output: bool = False,
|
117 |
-
) -> None:
|
118 |
-
super().__init__()
|
119 |
-
self.num_layers = num_layers
|
120 |
-
h = [hidden_dim] * (num_layers - 1)
|
121 |
-
self.layers = nn.ModuleList(
|
122 |
-
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
123 |
-
)
|
124 |
-
self.sigmoid_output = sigmoid_output
|
125 |
-
self.act = activation()
|
126 |
-
|
127 |
-
def forward(self, x):
|
128 |
-
for i, layer in enumerate(self.layers):
|
129 |
-
x = self.act(layer(x)) if i < self.num_layers - 1 else layer(x)
|
130 |
-
if self.sigmoid_output:
|
131 |
-
x = F.sigmoid(x)
|
132 |
-
return x
|
133 |
-
|
134 |
-
|
135 |
-
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
136 |
-
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
137 |
-
class LayerNorm2d(nn.Module):
|
138 |
-
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
139 |
-
super().__init__()
|
140 |
-
self.weight = nn.Parameter(torch.ones(num_channels))
|
141 |
-
self.bias = nn.Parameter(torch.zeros(num_channels))
|
142 |
-
self.eps = eps
|
143 |
-
|
144 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
145 |
-
u = x.mean(1, keepdim=True)
|
146 |
-
s = (x - u).pow(2).mean(1, keepdim=True)
|
147 |
-
x = (x - u) / torch.sqrt(s + self.eps)
|
148 |
-
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
149 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/sam2_image_predictor.py
DELETED
@@ -1,446 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
import logging
|
8 |
-
|
9 |
-
from typing import List, Optional, Tuple, Union
|
10 |
-
|
11 |
-
import numpy as np
|
12 |
-
import torch
|
13 |
-
from PIL.Image import Image
|
14 |
-
|
15 |
-
from sam2.modeling.sam2_base import SAM2Base
|
16 |
-
|
17 |
-
from sam2.utils.transforms import SAM2Transforms
|
18 |
-
|
19 |
-
|
20 |
-
class SAM2ImagePredictor:
|
21 |
-
def __init__(
|
22 |
-
self,
|
23 |
-
sam_model: SAM2Base,
|
24 |
-
mask_threshold=0.0,
|
25 |
-
max_hole_area=0.0,
|
26 |
-
max_sprinkle_area=0.0,
|
27 |
-
) -> None:
|
28 |
-
"""
|
29 |
-
Uses SAM-2 to calculate the image embedding for an image, and then
|
30 |
-
allow repeated, efficient mask prediction given prompts.
|
31 |
-
|
32 |
-
Arguments:
|
33 |
-
sam_model (Sam-2): The model to use for mask prediction.
|
34 |
-
mask_threshold (float): The threshold to use when converting mask logits
|
35 |
-
to binary masks. Masks are thresholded at 0 by default.
|
36 |
-
fill_hole_area (int): If fill_hole_area > 0, we fill small holes in up to
|
37 |
-
the maximum area of fill_hole_area in low_res_masks.
|
38 |
-
"""
|
39 |
-
super().__init__()
|
40 |
-
self.model = sam_model
|
41 |
-
self._transforms = SAM2Transforms(
|
42 |
-
resolution=self.model.image_size,
|
43 |
-
mask_threshold=mask_threshold,
|
44 |
-
max_hole_area=max_hole_area,
|
45 |
-
max_sprinkle_area=max_sprinkle_area,
|
46 |
-
)
|
47 |
-
|
48 |
-
# Predictor state
|
49 |
-
self._is_image_set = False
|
50 |
-
self._features = None
|
51 |
-
self._orig_hw = None
|
52 |
-
# Whether the predictor is set for single image or a batch of images
|
53 |
-
self._is_batch = False
|
54 |
-
|
55 |
-
# Predictor config
|
56 |
-
self.mask_threshold = mask_threshold
|
57 |
-
|
58 |
-
# Spatial dim for backbone feature maps
|
59 |
-
self._bb_feat_sizes = [
|
60 |
-
(256, 256),
|
61 |
-
(128, 128),
|
62 |
-
(64, 64),
|
63 |
-
]
|
64 |
-
|
65 |
-
@torch.no_grad()
|
66 |
-
def set_image(
|
67 |
-
self,
|
68 |
-
image: Union[np.ndarray, Image],
|
69 |
-
) -> None:
|
70 |
-
"""
|
71 |
-
Calculates the image embeddings for the provided image, allowing
|
72 |
-
masks to be predicted with the 'predict' method.
|
73 |
-
|
74 |
-
Arguments:
|
75 |
-
image (np.ndarray or PIL Image): The input image to embed in RGB format. The image should be in HWC format if np.ndarray, or WHC format if PIL Image
|
76 |
-
with pixel values in [0, 255].
|
77 |
-
image_format (str): The color format of the image, in ['RGB', 'BGR'].
|
78 |
-
"""
|
79 |
-
self.reset_predictor()
|
80 |
-
# Transform the image to the form expected by the model
|
81 |
-
if isinstance(image, np.ndarray):
|
82 |
-
logging.info("For numpy array image, we assume (HxWxC) format")
|
83 |
-
self._orig_hw = [image.shape[:2]]
|
84 |
-
elif isinstance(image, Image):
|
85 |
-
w, h = image.size
|
86 |
-
self._orig_hw = [(h, w)]
|
87 |
-
else:
|
88 |
-
raise NotImplementedError("Image format not supported")
|
89 |
-
|
90 |
-
input_image = self._transforms(image)
|
91 |
-
input_image = input_image[None, ...].to(self.device)
|
92 |
-
|
93 |
-
assert (
|
94 |
-
len(input_image.shape) == 4 and input_image.shape[1] == 3
|
95 |
-
), f"input_image must be of size 1x3xHxW, got {input_image.shape}"
|
96 |
-
logging.info("Computing image embeddings for the provided image...")
|
97 |
-
backbone_out = self.model.forward_image(input_image)
|
98 |
-
_, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
|
99 |
-
# Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
|
100 |
-
if self.model.directly_add_no_mem_embed:
|
101 |
-
vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
|
102 |
-
|
103 |
-
feats = [
|
104 |
-
feat.permute(1, 2, 0).view(1, -1, *feat_size)
|
105 |
-
for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
|
106 |
-
][::-1]
|
107 |
-
self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
|
108 |
-
self._is_image_set = True
|
109 |
-
logging.info("Image embeddings computed.")
|
110 |
-
|
111 |
-
@torch.no_grad()
|
112 |
-
def set_image_batch(
|
113 |
-
self,
|
114 |
-
image_list: List[Union[np.ndarray]],
|
115 |
-
) -> None:
|
116 |
-
"""
|
117 |
-
Calculates the image embeddings for the provided image batch, allowing
|
118 |
-
masks to be predicted with the 'predict_batch' method.
|
119 |
-
|
120 |
-
Arguments:
|
121 |
-
image_list (List[np.ndarray]): The input images to embed in RGB format. The image should be in HWC format if np.ndarray
|
122 |
-
with pixel values in [0, 255].
|
123 |
-
"""
|
124 |
-
self.reset_predictor()
|
125 |
-
assert isinstance(image_list, list)
|
126 |
-
self._orig_hw = []
|
127 |
-
for image in image_list:
|
128 |
-
assert isinstance(
|
129 |
-
image, np.ndarray
|
130 |
-
), "Images are expected to be an np.ndarray in RGB format, and of shape HWC"
|
131 |
-
self._orig_hw.append(image.shape[:2])
|
132 |
-
# Transform the image to the form expected by the model
|
133 |
-
img_batch = self._transforms.forward_batch(image_list)
|
134 |
-
img_batch = img_batch.to(self.device)
|
135 |
-
batch_size = img_batch.shape[0]
|
136 |
-
assert (
|
137 |
-
len(img_batch.shape) == 4 and img_batch.shape[1] == 3
|
138 |
-
), f"img_batch must be of size Bx3xHxW, got {img_batch.shape}"
|
139 |
-
logging.info("Computing image embeddings for the provided images...")
|
140 |
-
backbone_out = self.model.forward_image(img_batch)
|
141 |
-
_, vision_feats, _, _ = self.model._prepare_backbone_features(backbone_out)
|
142 |
-
# Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
|
143 |
-
if self.model.directly_add_no_mem_embed:
|
144 |
-
vision_feats[-1] = vision_feats[-1] + self.model.no_mem_embed
|
145 |
-
|
146 |
-
feats = [
|
147 |
-
feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
|
148 |
-
for feat, feat_size in zip(vision_feats[::-1], self._bb_feat_sizes[::-1])
|
149 |
-
][::-1]
|
150 |
-
self._features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
|
151 |
-
self._is_image_set = True
|
152 |
-
self._is_batch = True
|
153 |
-
logging.info("Image embeddings computed.")
|
154 |
-
|
155 |
-
def predict_batch(
|
156 |
-
self,
|
157 |
-
point_coords_batch: List[np.ndarray] = None,
|
158 |
-
point_labels_batch: List[np.ndarray] = None,
|
159 |
-
box_batch: List[np.ndarray] = None,
|
160 |
-
mask_input_batch: List[np.ndarray] = None,
|
161 |
-
multimask_output: bool = True,
|
162 |
-
return_logits: bool = False,
|
163 |
-
normalize_coords=True,
|
164 |
-
) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]:
|
165 |
-
"""This function is very similar to predict(...), however it is used for batched mode, when the model is expected to generate predictions on multiple images.
|
166 |
-
It returns a tupele of lists of masks, ious, and low_res_masks_logits.
|
167 |
-
"""
|
168 |
-
assert self._is_batch, "This function should only be used when in batched mode"
|
169 |
-
if not self._is_image_set:
|
170 |
-
raise RuntimeError(
|
171 |
-
"An image must be set with .set_image_batch(...) before mask prediction."
|
172 |
-
)
|
173 |
-
num_images = len(self._features["image_embed"])
|
174 |
-
all_masks = []
|
175 |
-
all_ious = []
|
176 |
-
all_low_res_masks = []
|
177 |
-
for img_idx in range(num_images):
|
178 |
-
# Transform input prompts
|
179 |
-
point_coords = (
|
180 |
-
point_coords_batch[img_idx] if point_coords_batch is not None else None
|
181 |
-
)
|
182 |
-
point_labels = (
|
183 |
-
point_labels_batch[img_idx] if point_labels_batch is not None else None
|
184 |
-
)
|
185 |
-
box = box_batch[img_idx] if box_batch is not None else None
|
186 |
-
mask_input = (
|
187 |
-
mask_input_batch[img_idx] if mask_input_batch is not None else None
|
188 |
-
)
|
189 |
-
mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts(
|
190 |
-
point_coords,
|
191 |
-
point_labels,
|
192 |
-
box,
|
193 |
-
mask_input,
|
194 |
-
normalize_coords,
|
195 |
-
img_idx=img_idx,
|
196 |
-
)
|
197 |
-
masks, iou_predictions, low_res_masks = self._predict(
|
198 |
-
unnorm_coords,
|
199 |
-
labels,
|
200 |
-
unnorm_box,
|
201 |
-
mask_input,
|
202 |
-
multimask_output,
|
203 |
-
return_logits=return_logits,
|
204 |
-
img_idx=img_idx,
|
205 |
-
)
|
206 |
-
masks_np = masks.squeeze(0).float().detach().cpu().numpy()
|
207 |
-
iou_predictions_np = (
|
208 |
-
iou_predictions.squeeze(0).float().detach().cpu().numpy()
|
209 |
-
)
|
210 |
-
low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
|
211 |
-
all_masks.append(masks_np)
|
212 |
-
all_ious.append(iou_predictions_np)
|
213 |
-
all_low_res_masks.append(low_res_masks_np)
|
214 |
-
|
215 |
-
return all_masks, all_ious, all_low_res_masks
|
216 |
-
|
217 |
-
def predict(
|
218 |
-
self,
|
219 |
-
point_coords: Optional[np.ndarray] = None,
|
220 |
-
point_labels: Optional[np.ndarray] = None,
|
221 |
-
box: Optional[np.ndarray] = None,
|
222 |
-
mask_input: Optional[np.ndarray] = None,
|
223 |
-
multimask_output: bool = True,
|
224 |
-
return_logits: bool = False,
|
225 |
-
normalize_coords=True,
|
226 |
-
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
227 |
-
"""
|
228 |
-
Predict masks for the given input prompts, using the currently set image.
|
229 |
-
|
230 |
-
Arguments:
|
231 |
-
point_coords (np.ndarray or None): A Nx2 array of point prompts to the
|
232 |
-
model. Each point is in (X,Y) in pixels.
|
233 |
-
point_labels (np.ndarray or None): A length N array of labels for the
|
234 |
-
point prompts. 1 indicates a foreground point and 0 indicates a
|
235 |
-
background point.
|
236 |
-
box (np.ndarray or None): A length 4 array given a box prompt to the
|
237 |
-
model, in XYXY format.
|
238 |
-
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
239 |
-
coming from a previous prediction iteration. Has form 1xHxW, where
|
240 |
-
for SAM, H=W=256.
|
241 |
-
multimask_output (bool): If true, the model will return three masks.
|
242 |
-
For ambiguous input prompts (such as a single click), this will often
|
243 |
-
produce better masks than a single prediction. If only a single
|
244 |
-
mask is needed, the model's predicted quality score can be used
|
245 |
-
to select the best mask. For non-ambiguous prompts, such as multiple
|
246 |
-
input prompts, multimask_output=False can give better results.
|
247 |
-
return_logits (bool): If true, returns un-thresholded masks logits
|
248 |
-
instead of a binary mask.
|
249 |
-
normalize_coords (bool): If true, the point coordinates will be normalized to the range [0,1] and point_coords is expected to be wrt. image dimensions.
|
250 |
-
|
251 |
-
Returns:
|
252 |
-
(np.ndarray): The output masks in CxHxW format, where C is the
|
253 |
-
number of masks, and (H, W) is the original image size.
|
254 |
-
(np.ndarray): An array of length C containing the model's
|
255 |
-
predictions for the quality of each mask.
|
256 |
-
(np.ndarray): An array of shape CxHxW, where C is the number
|
257 |
-
of masks and H=W=256. These low resolution logits can be passed to
|
258 |
-
a subsequent iteration as mask input.
|
259 |
-
"""
|
260 |
-
if not self._is_image_set:
|
261 |
-
raise RuntimeError(
|
262 |
-
"An image must be set with .set_image(...) before mask prediction."
|
263 |
-
)
|
264 |
-
|
265 |
-
# Transform input prompts
|
266 |
-
|
267 |
-
mask_input, unnorm_coords, labels, unnorm_box = self._prep_prompts(
|
268 |
-
point_coords, point_labels, box, mask_input, normalize_coords
|
269 |
-
)
|
270 |
-
|
271 |
-
masks, iou_predictions, low_res_masks = self._predict(
|
272 |
-
unnorm_coords,
|
273 |
-
labels,
|
274 |
-
unnorm_box,
|
275 |
-
mask_input,
|
276 |
-
multimask_output,
|
277 |
-
return_logits=return_logits,
|
278 |
-
)
|
279 |
-
|
280 |
-
masks_np = masks.squeeze(0).float().detach().cpu().numpy()
|
281 |
-
iou_predictions_np = iou_predictions.squeeze(0).float().detach().cpu().numpy()
|
282 |
-
low_res_masks_np = low_res_masks.squeeze(0).float().detach().cpu().numpy()
|
283 |
-
return masks_np, iou_predictions_np, low_res_masks_np
|
284 |
-
|
285 |
-
def _prep_prompts(
|
286 |
-
self, point_coords, point_labels, box, mask_logits, normalize_coords, img_idx=-1
|
287 |
-
):
|
288 |
-
|
289 |
-
unnorm_coords, labels, unnorm_box, mask_input = None, None, None, None
|
290 |
-
if point_coords is not None:
|
291 |
-
assert (
|
292 |
-
point_labels is not None
|
293 |
-
), "point_labels must be supplied if point_coords is supplied."
|
294 |
-
point_coords = torch.as_tensor(
|
295 |
-
point_coords, dtype=torch.float, device=self.device
|
296 |
-
)
|
297 |
-
unnorm_coords = self._transforms.transform_coords(
|
298 |
-
point_coords, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]
|
299 |
-
)
|
300 |
-
labels = torch.as_tensor(point_labels, dtype=torch.int, device=self.device)
|
301 |
-
if len(unnorm_coords.shape) == 2:
|
302 |
-
unnorm_coords, labels = unnorm_coords[None, ...], labels[None, ...]
|
303 |
-
if box is not None:
|
304 |
-
box = torch.as_tensor(box, dtype=torch.float, device=self.device)
|
305 |
-
unnorm_box = self._transforms.transform_boxes(
|
306 |
-
box, normalize=normalize_coords, orig_hw=self._orig_hw[img_idx]
|
307 |
-
) # Bx2x2
|
308 |
-
if mask_logits is not None:
|
309 |
-
mask_input = torch.as_tensor(
|
310 |
-
mask_logits, dtype=torch.float, device=self.device
|
311 |
-
)
|
312 |
-
if len(mask_input.shape) == 3:
|
313 |
-
mask_input = mask_input[None, :, :, :]
|
314 |
-
return mask_input, unnorm_coords, labels, unnorm_box
|
315 |
-
|
316 |
-
@torch.no_grad()
|
317 |
-
def _predict(
|
318 |
-
self,
|
319 |
-
point_coords: Optional[torch.Tensor],
|
320 |
-
point_labels: Optional[torch.Tensor],
|
321 |
-
boxes: Optional[torch.Tensor] = None,
|
322 |
-
mask_input: Optional[torch.Tensor] = None,
|
323 |
-
multimask_output: bool = True,
|
324 |
-
return_logits: bool = False,
|
325 |
-
img_idx: int = -1,
|
326 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
327 |
-
"""
|
328 |
-
Predict masks for the given input prompts, using the currently set image.
|
329 |
-
Input prompts are batched torch tensors and are expected to already be
|
330 |
-
transformed to the input frame using SAM2Transforms.
|
331 |
-
|
332 |
-
Arguments:
|
333 |
-
point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the
|
334 |
-
model. Each point is in (X,Y) in pixels.
|
335 |
-
point_labels (torch.Tensor or None): A BxN array of labels for the
|
336 |
-
point prompts. 1 indicates a foreground point and 0 indicates a
|
337 |
-
background point.
|
338 |
-
boxes (np.ndarray or None): A Bx4 array given a box prompt to the
|
339 |
-
model, in XYXY format.
|
340 |
-
mask_input (np.ndarray): A low resolution mask input to the model, typically
|
341 |
-
coming from a previous prediction iteration. Has form Bx1xHxW, where
|
342 |
-
for SAM, H=W=256. Masks returned by a previous iteration of the
|
343 |
-
predict method do not need further transformation.
|
344 |
-
multimask_output (bool): If true, the model will return three masks.
|
345 |
-
For ambiguous input prompts (such as a single click), this will often
|
346 |
-
produce better masks than a single prediction. If only a single
|
347 |
-
mask is needed, the model's predicted quality score can be used
|
348 |
-
to select the best mask. For non-ambiguous prompts, such as multiple
|
349 |
-
input prompts, multimask_output=False can give better results.
|
350 |
-
return_logits (bool): If true, returns un-thresholded masks logits
|
351 |
-
instead of a binary mask.
|
352 |
-
|
353 |
-
Returns:
|
354 |
-
(torch.Tensor): The output masks in BxCxHxW format, where C is the
|
355 |
-
number of masks, and (H, W) is the original image size.
|
356 |
-
(torch.Tensor): An array of shape BxC containing the model's
|
357 |
-
predictions for the quality of each mask.
|
358 |
-
(torch.Tensor): An array of shape BxCxHxW, where C is the number
|
359 |
-
of masks and H=W=256. These low res logits can be passed to
|
360 |
-
a subsequent iteration as mask input.
|
361 |
-
"""
|
362 |
-
if not self._is_image_set:
|
363 |
-
raise RuntimeError(
|
364 |
-
"An image must be set with .set_image(...) before mask prediction."
|
365 |
-
)
|
366 |
-
|
367 |
-
if point_coords is not None:
|
368 |
-
concat_points = (point_coords, point_labels)
|
369 |
-
else:
|
370 |
-
concat_points = None
|
371 |
-
|
372 |
-
# Embed prompts
|
373 |
-
if boxes is not None:
|
374 |
-
box_coords = boxes.reshape(-1, 2, 2)
|
375 |
-
box_labels = torch.tensor([[2, 3]], dtype=torch.int, device=boxes.device)
|
376 |
-
box_labels = box_labels.repeat(boxes.size(0), 1)
|
377 |
-
# we merge "boxes" and "points" into a single "concat_points" input (where
|
378 |
-
# boxes are added at the beginning) to sam_prompt_encoder
|
379 |
-
if concat_points is not None:
|
380 |
-
concat_coords = torch.cat([box_coords, concat_points[0]], dim=1)
|
381 |
-
concat_labels = torch.cat([box_labels, concat_points[1]], dim=1)
|
382 |
-
concat_points = (concat_coords, concat_labels)
|
383 |
-
else:
|
384 |
-
concat_points = (box_coords, box_labels)
|
385 |
-
|
386 |
-
sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder(
|
387 |
-
points=concat_points,
|
388 |
-
boxes=None,
|
389 |
-
masks=mask_input,
|
390 |
-
)
|
391 |
-
|
392 |
-
# Predict masks
|
393 |
-
batched_mode = (
|
394 |
-
concat_points is not None and concat_points[0].shape[0] > 1
|
395 |
-
) # multi object prediction
|
396 |
-
high_res_features = [
|
397 |
-
feat_level[img_idx].unsqueeze(0)
|
398 |
-
for feat_level in self._features["high_res_feats"]
|
399 |
-
]
|
400 |
-
low_res_masks, iou_predictions, _, _ = self.model.sam_mask_decoder(
|
401 |
-
image_embeddings=self._features["image_embed"][img_idx].unsqueeze(0),
|
402 |
-
image_pe=self.model.sam_prompt_encoder.get_dense_pe(),
|
403 |
-
sparse_prompt_embeddings=sparse_embeddings,
|
404 |
-
dense_prompt_embeddings=dense_embeddings,
|
405 |
-
multimask_output=multimask_output,
|
406 |
-
repeat_image=batched_mode,
|
407 |
-
high_res_features=high_res_features,
|
408 |
-
)
|
409 |
-
|
410 |
-
# Upscale the masks to the original image resolution
|
411 |
-
masks = self._transforms.postprocess_masks(
|
412 |
-
low_res_masks, self._orig_hw[img_idx]
|
413 |
-
)
|
414 |
-
low_res_masks = torch.clamp(low_res_masks, -32.0, 32.0)
|
415 |
-
if not return_logits:
|
416 |
-
masks = masks > self.mask_threshold
|
417 |
-
|
418 |
-
return masks, iou_predictions, low_res_masks
|
419 |
-
|
420 |
-
def get_image_embedding(self) -> torch.Tensor:
|
421 |
-
"""
|
422 |
-
Returns the image embeddings for the currently set image, with
|
423 |
-
shape 1xCxHxW, where C is the embedding dimension and (H,W) are
|
424 |
-
the embedding spatial dimension of SAM (typically C=256, H=W=64).
|
425 |
-
"""
|
426 |
-
if not self._is_image_set:
|
427 |
-
raise RuntimeError(
|
428 |
-
"An image must be set with .set_image(...) to generate an embedding."
|
429 |
-
)
|
430 |
-
assert (
|
431 |
-
self._features is not None
|
432 |
-
), "Features must exist if an image has been set."
|
433 |
-
return self._features["image_embed"]
|
434 |
-
|
435 |
-
@property
|
436 |
-
def device(self) -> torch.device:
|
437 |
-
return self.model.device
|
438 |
-
|
439 |
-
def reset_predictor(self) -> None:
|
440 |
-
"""
|
441 |
-
Resets the image embeddings and other state variables.
|
442 |
-
"""
|
443 |
-
self._is_image_set = False
|
444 |
-
self._features = None
|
445 |
-
self._orig_hw = None
|
446 |
-
self._is_batch = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/sam2_video_predictor.py
DELETED
@@ -1,898 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
from collections import OrderedDict
|
8 |
-
|
9 |
-
import torch
|
10 |
-
|
11 |
-
from tqdm import tqdm
|
12 |
-
|
13 |
-
from sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base
|
14 |
-
from sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames
|
15 |
-
|
16 |
-
|
17 |
-
class SAM2VideoPredictor(SAM2Base):
|
18 |
-
"""The predictor class to handle user interactions and manage inference states."""
|
19 |
-
|
20 |
-
def __init__(
|
21 |
-
self,
|
22 |
-
fill_hole_area=0,
|
23 |
-
# whether to apply non-overlapping constraints on the output object masks
|
24 |
-
non_overlap_masks=False,
|
25 |
-
# whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks;
|
26 |
-
# note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True)
|
27 |
-
clear_non_cond_mem_around_input=False,
|
28 |
-
# whether to also clear non-conditioning memory of the surrounding frames (only effective when `clear_non_cond_mem_around_input` is True).
|
29 |
-
clear_non_cond_mem_for_multi_obj=False,
|
30 |
-
**kwargs,
|
31 |
-
):
|
32 |
-
super().__init__(**kwargs)
|
33 |
-
self.fill_hole_area = fill_hole_area
|
34 |
-
self.non_overlap_masks = non_overlap_masks
|
35 |
-
self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input
|
36 |
-
self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj
|
37 |
-
|
38 |
-
@torch.inference_mode()
|
39 |
-
def init_state(
|
40 |
-
self,
|
41 |
-
video_path,
|
42 |
-
offload_video_to_cpu=False,
|
43 |
-
offload_state_to_cpu=False,
|
44 |
-
async_loading_frames=False,
|
45 |
-
):
|
46 |
-
"""Initialize a inference state."""
|
47 |
-
images, video_height, video_width = load_video_frames(
|
48 |
-
video_path=video_path,
|
49 |
-
image_size=self.image_size,
|
50 |
-
offload_video_to_cpu=offload_video_to_cpu,
|
51 |
-
async_loading_frames=async_loading_frames,
|
52 |
-
)
|
53 |
-
inference_state = {}
|
54 |
-
inference_state["images"] = images
|
55 |
-
inference_state["num_frames"] = len(images)
|
56 |
-
# whether to offload the video frames to CPU memory
|
57 |
-
# turning on this option saves the GPU memory with only a very small overhead
|
58 |
-
inference_state["offload_video_to_cpu"] = offload_video_to_cpu
|
59 |
-
# whether to offload the inference state to CPU memory
|
60 |
-
# turning on this option saves the GPU memory at the cost of a lower tracking fps
|
61 |
-
# (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object
|
62 |
-
# and from 24 to 21 when tracking two objects)
|
63 |
-
inference_state["offload_state_to_cpu"] = offload_state_to_cpu
|
64 |
-
# the original video height and width, used for resizing final output scores
|
65 |
-
inference_state["video_height"] = video_height
|
66 |
-
inference_state["video_width"] = video_width
|
67 |
-
inference_state["device"] = torch.device("cuda")
|
68 |
-
if offload_state_to_cpu:
|
69 |
-
inference_state["storage_device"] = torch.device("cpu")
|
70 |
-
else:
|
71 |
-
inference_state["storage_device"] = torch.device("cuda")
|
72 |
-
# inputs on each frame
|
73 |
-
inference_state["point_inputs_per_obj"] = {}
|
74 |
-
inference_state["mask_inputs_per_obj"] = {}
|
75 |
-
# visual features on a small number of recently visited frames for quick interactions
|
76 |
-
inference_state["cached_features"] = {}
|
77 |
-
# values that don't change across frames (so we only need to hold one copy of them)
|
78 |
-
inference_state["constants"] = {}
|
79 |
-
# mapping between client-side object id and model-side object index
|
80 |
-
inference_state["obj_id_to_idx"] = OrderedDict()
|
81 |
-
inference_state["obj_idx_to_id"] = OrderedDict()
|
82 |
-
inference_state["obj_ids"] = []
|
83 |
-
# A storage to hold the model's tracking results and states on each frame
|
84 |
-
inference_state["output_dict"] = {
|
85 |
-
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
86 |
-
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
87 |
-
}
|
88 |
-
# Slice (view) of each object tracking results, sharing the same memory with "output_dict"
|
89 |
-
inference_state["output_dict_per_obj"] = {}
|
90 |
-
# A temporary storage to hold new outputs when user interact with a frame
|
91 |
-
# to add clicks or mask (it's merged into "output_dict" before propagation starts)
|
92 |
-
inference_state["temp_output_dict_per_obj"] = {}
|
93 |
-
# Frames that already holds consolidated outputs from click or mask inputs
|
94 |
-
# (we directly use their consolidated outputs during tracking)
|
95 |
-
inference_state["consolidated_frame_inds"] = {
|
96 |
-
"cond_frame_outputs": set(), # set containing frame indices
|
97 |
-
"non_cond_frame_outputs": set(), # set containing frame indices
|
98 |
-
}
|
99 |
-
# metadata for each tracking frame (e.g. which direction it's tracked)
|
100 |
-
inference_state["tracking_has_started"] = False
|
101 |
-
inference_state["frames_already_tracked"] = {}
|
102 |
-
# Warm up the visual backbone and cache the image feature on frame 0
|
103 |
-
self._get_image_feature(inference_state, frame_idx=0, batch_size=1)
|
104 |
-
return inference_state
|
105 |
-
|
106 |
-
def _obj_id_to_idx(self, inference_state, obj_id):
|
107 |
-
"""Map client-side object id to model-side object index."""
|
108 |
-
obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None)
|
109 |
-
if obj_idx is not None:
|
110 |
-
return obj_idx
|
111 |
-
|
112 |
-
# This is a new object id not sent to the server before. We only allow adding
|
113 |
-
# new objects *before* the tracking starts.
|
114 |
-
allow_new_object = not inference_state["tracking_has_started"]
|
115 |
-
if allow_new_object:
|
116 |
-
# get the next object slot
|
117 |
-
obj_idx = len(inference_state["obj_id_to_idx"])
|
118 |
-
inference_state["obj_id_to_idx"][obj_id] = obj_idx
|
119 |
-
inference_state["obj_idx_to_id"][obj_idx] = obj_id
|
120 |
-
inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"])
|
121 |
-
# set up input and output structures for this object
|
122 |
-
inference_state["point_inputs_per_obj"][obj_idx] = {}
|
123 |
-
inference_state["mask_inputs_per_obj"][obj_idx] = {}
|
124 |
-
inference_state["output_dict_per_obj"][obj_idx] = {
|
125 |
-
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
126 |
-
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
127 |
-
}
|
128 |
-
inference_state["temp_output_dict_per_obj"][obj_idx] = {
|
129 |
-
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
130 |
-
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
|
131 |
-
}
|
132 |
-
return obj_idx
|
133 |
-
else:
|
134 |
-
raise RuntimeError(
|
135 |
-
f"Cannot add new object id {obj_id} after tracking starts. "
|
136 |
-
f"All existing object ids: {inference_state['obj_ids']}. "
|
137 |
-
f"Please call 'reset_state' to restart from scratch."
|
138 |
-
)
|
139 |
-
|
140 |
-
def _obj_idx_to_id(self, inference_state, obj_idx):
|
141 |
-
"""Map model-side object index to client-side object id."""
|
142 |
-
return inference_state["obj_idx_to_id"][obj_idx]
|
143 |
-
|
144 |
-
def _get_obj_num(self, inference_state):
|
145 |
-
"""Get the total number of unique object ids received so far in this session."""
|
146 |
-
return len(inference_state["obj_idx_to_id"])
|
147 |
-
|
148 |
-
@torch.inference_mode()
|
149 |
-
def add_new_points(
|
150 |
-
self,
|
151 |
-
inference_state,
|
152 |
-
frame_idx,
|
153 |
-
obj_id,
|
154 |
-
points,
|
155 |
-
labels,
|
156 |
-
clear_old_points=True,
|
157 |
-
normalize_coords=True,
|
158 |
-
):
|
159 |
-
"""Add new points to a frame."""
|
160 |
-
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
|
161 |
-
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
|
162 |
-
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
|
163 |
-
|
164 |
-
if not isinstance(points, torch.Tensor):
|
165 |
-
points = torch.tensor(points, dtype=torch.float32)
|
166 |
-
if not isinstance(labels, torch.Tensor):
|
167 |
-
labels = torch.tensor(labels, dtype=torch.int32)
|
168 |
-
if points.dim() == 2:
|
169 |
-
points = points.unsqueeze(0) # add batch dimension
|
170 |
-
if labels.dim() == 1:
|
171 |
-
labels = labels.unsqueeze(0) # add batch dimension
|
172 |
-
if normalize_coords:
|
173 |
-
video_H = inference_state["video_height"]
|
174 |
-
video_W = inference_state["video_width"]
|
175 |
-
points = points / torch.tensor([video_W, video_H]).to(points.device)
|
176 |
-
# scale the (normalized) coordinates by the model's internal image size
|
177 |
-
points = points * self.image_size
|
178 |
-
points = points.to(inference_state["device"])
|
179 |
-
labels = labels.to(inference_state["device"])
|
180 |
-
|
181 |
-
if not clear_old_points:
|
182 |
-
point_inputs = point_inputs_per_frame.get(frame_idx, None)
|
183 |
-
else:
|
184 |
-
point_inputs = None
|
185 |
-
point_inputs = concat_points(point_inputs, points, labels)
|
186 |
-
|
187 |
-
point_inputs_per_frame[frame_idx] = point_inputs
|
188 |
-
mask_inputs_per_frame.pop(frame_idx, None)
|
189 |
-
# If this frame hasn't been tracked before, we treat it as an initial conditioning
|
190 |
-
# frame, meaning that the inputs points are to generate segments on this frame without
|
191 |
-
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
|
192 |
-
# the input points will be used to correct the already tracked masks.
|
193 |
-
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
|
194 |
-
# whether to track in reverse time order
|
195 |
-
if is_init_cond_frame:
|
196 |
-
reverse = False
|
197 |
-
else:
|
198 |
-
reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
|
199 |
-
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
200 |
-
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
201 |
-
# Add a frame to conditioning output if it's an initial conditioning frame or
|
202 |
-
# if the model sees all frames receiving clicks/mask as conditioning frames.
|
203 |
-
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
|
204 |
-
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
205 |
-
|
206 |
-
# Get any previously predicted mask logits on this object and feed it along with
|
207 |
-
# the new clicks into the SAM mask decoder.
|
208 |
-
prev_sam_mask_logits = None
|
209 |
-
# lookup temporary output dict first, which contains the most recent output
|
210 |
-
# (if not found, then lookup conditioning and non-conditioning frame output)
|
211 |
-
prev_out = obj_temp_output_dict[storage_key].get(frame_idx)
|
212 |
-
if prev_out is None:
|
213 |
-
prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx)
|
214 |
-
if prev_out is None:
|
215 |
-
prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx)
|
216 |
-
|
217 |
-
if prev_out is not None and prev_out["pred_masks"] is not None:
|
218 |
-
prev_sam_mask_logits = prev_out["pred_masks"].cuda(non_blocking=True)
|
219 |
-
# Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues.
|
220 |
-
prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0)
|
221 |
-
current_out, _ = self._run_single_frame_inference(
|
222 |
-
inference_state=inference_state,
|
223 |
-
output_dict=obj_output_dict, # run on the slice of a single object
|
224 |
-
frame_idx=frame_idx,
|
225 |
-
batch_size=1, # run on the slice of a single object
|
226 |
-
is_init_cond_frame=is_init_cond_frame,
|
227 |
-
point_inputs=point_inputs,
|
228 |
-
mask_inputs=None,
|
229 |
-
reverse=reverse,
|
230 |
-
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder
|
231 |
-
# at the beginning of `propagate_in_video` (after user finalize their clicks). This
|
232 |
-
# allows us to enforce non-overlapping constraints on all objects before encoding
|
233 |
-
# them into memory.
|
234 |
-
run_mem_encoder=False,
|
235 |
-
prev_sam_mask_logits=prev_sam_mask_logits,
|
236 |
-
)
|
237 |
-
# Add the output to the output dict (to be used as future memory)
|
238 |
-
obj_temp_output_dict[storage_key][frame_idx] = current_out
|
239 |
-
|
240 |
-
# Resize the output mask to the original video resolution
|
241 |
-
obj_ids = inference_state["obj_ids"]
|
242 |
-
consolidated_out = self._consolidate_temp_output_across_obj(
|
243 |
-
inference_state,
|
244 |
-
frame_idx,
|
245 |
-
is_cond=is_cond,
|
246 |
-
run_mem_encoder=False,
|
247 |
-
consolidate_at_video_res=True,
|
248 |
-
)
|
249 |
-
_, video_res_masks = self._get_orig_video_res_output(
|
250 |
-
inference_state, consolidated_out["pred_masks_video_res"]
|
251 |
-
)
|
252 |
-
return frame_idx, obj_ids, video_res_masks
|
253 |
-
|
254 |
-
@torch.inference_mode()
|
255 |
-
def add_new_mask(
|
256 |
-
self,
|
257 |
-
inference_state,
|
258 |
-
frame_idx,
|
259 |
-
obj_id,
|
260 |
-
mask,
|
261 |
-
):
|
262 |
-
"""Add new mask to a frame."""
|
263 |
-
obj_idx = self._obj_id_to_idx(inference_state, obj_id)
|
264 |
-
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx]
|
265 |
-
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx]
|
266 |
-
|
267 |
-
if not isinstance(mask, torch.Tensor):
|
268 |
-
mask = torch.tensor(mask, dtype=torch.bool)
|
269 |
-
assert mask.dim() == 2
|
270 |
-
mask_H, mask_W = mask.shape
|
271 |
-
mask_inputs_orig = mask[None, None] # add batch and channel dimension
|
272 |
-
mask_inputs_orig = mask_inputs_orig.float().to(inference_state["device"])
|
273 |
-
|
274 |
-
# resize the mask if it doesn't match the model's image size
|
275 |
-
if mask_H != self.image_size or mask_W != self.image_size:
|
276 |
-
mask_inputs = torch.nn.functional.interpolate(
|
277 |
-
mask_inputs_orig,
|
278 |
-
size=(self.image_size, self.image_size),
|
279 |
-
align_corners=False,
|
280 |
-
mode="bilinear",
|
281 |
-
antialias=True, # use antialias for downsampling
|
282 |
-
)
|
283 |
-
mask_inputs = (mask_inputs >= 0.5).float()
|
284 |
-
else:
|
285 |
-
mask_inputs = mask_inputs_orig
|
286 |
-
|
287 |
-
mask_inputs_per_frame[frame_idx] = mask_inputs
|
288 |
-
point_inputs_per_frame.pop(frame_idx, None)
|
289 |
-
# If this frame hasn't been tracked before, we treat it as an initial conditioning
|
290 |
-
# frame, meaning that the inputs points are to generate segments on this frame without
|
291 |
-
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked),
|
292 |
-
# the input points will be used to correct the already tracked masks.
|
293 |
-
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"]
|
294 |
-
# whether to track in reverse time order
|
295 |
-
if is_init_cond_frame:
|
296 |
-
reverse = False
|
297 |
-
else:
|
298 |
-
reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"]
|
299 |
-
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
300 |
-
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
301 |
-
# Add a frame to conditioning output if it's an initial conditioning frame or
|
302 |
-
# if the model sees all frames receiving clicks/mask as conditioning frames.
|
303 |
-
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond
|
304 |
-
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
305 |
-
|
306 |
-
current_out, _ = self._run_single_frame_inference(
|
307 |
-
inference_state=inference_state,
|
308 |
-
output_dict=obj_output_dict, # run on the slice of a single object
|
309 |
-
frame_idx=frame_idx,
|
310 |
-
batch_size=1, # run on the slice of a single object
|
311 |
-
is_init_cond_frame=is_init_cond_frame,
|
312 |
-
point_inputs=None,
|
313 |
-
mask_inputs=mask_inputs,
|
314 |
-
reverse=reverse,
|
315 |
-
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder
|
316 |
-
# at the beginning of `propagate_in_video` (after user finalize their clicks). This
|
317 |
-
# allows us to enforce non-overlapping constraints on all objects before encoding
|
318 |
-
# them into memory.
|
319 |
-
run_mem_encoder=False,
|
320 |
-
)
|
321 |
-
# Add the output to the output dict (to be used as future memory)
|
322 |
-
obj_temp_output_dict[storage_key][frame_idx] = current_out
|
323 |
-
|
324 |
-
# Resize the output mask to the original video resolution
|
325 |
-
obj_ids = inference_state["obj_ids"]
|
326 |
-
consolidated_out = self._consolidate_temp_output_across_obj(
|
327 |
-
inference_state,
|
328 |
-
frame_idx,
|
329 |
-
is_cond=is_cond,
|
330 |
-
run_mem_encoder=False,
|
331 |
-
consolidate_at_video_res=True,
|
332 |
-
)
|
333 |
-
_, video_res_masks = self._get_orig_video_res_output(
|
334 |
-
inference_state, consolidated_out["pred_masks_video_res"]
|
335 |
-
)
|
336 |
-
return frame_idx, obj_ids, video_res_masks
|
337 |
-
|
338 |
-
def _get_orig_video_res_output(self, inference_state, any_res_masks):
|
339 |
-
"""
|
340 |
-
Resize the object scores to the original video resolution (video_res_masks)
|
341 |
-
and apply non-overlapping constraints for final output.
|
342 |
-
"""
|
343 |
-
device = inference_state["device"]
|
344 |
-
video_H = inference_state["video_height"]
|
345 |
-
video_W = inference_state["video_width"]
|
346 |
-
any_res_masks = any_res_masks.to(device, non_blocking=True)
|
347 |
-
if any_res_masks.shape[-2:] == (video_H, video_W):
|
348 |
-
video_res_masks = any_res_masks
|
349 |
-
else:
|
350 |
-
video_res_masks = torch.nn.functional.interpolate(
|
351 |
-
any_res_masks,
|
352 |
-
size=(video_H, video_W),
|
353 |
-
mode="bilinear",
|
354 |
-
align_corners=False,
|
355 |
-
)
|
356 |
-
if self.non_overlap_masks:
|
357 |
-
video_res_masks = self._apply_non_overlapping_constraints(video_res_masks)
|
358 |
-
return any_res_masks, video_res_masks
|
359 |
-
|
360 |
-
def _consolidate_temp_output_across_obj(
|
361 |
-
self,
|
362 |
-
inference_state,
|
363 |
-
frame_idx,
|
364 |
-
is_cond,
|
365 |
-
run_mem_encoder,
|
366 |
-
consolidate_at_video_res=False,
|
367 |
-
):
|
368 |
-
"""
|
369 |
-
Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on
|
370 |
-
a frame into a single output for all objects, including
|
371 |
-
1) fill any missing objects either from `output_dict_per_obj` (if they exist in
|
372 |
-
`output_dict_per_obj` for this frame) or leave them as placeholder values
|
373 |
-
(if they don't exist in `output_dict_per_obj` for this frame);
|
374 |
-
2) if specified, rerun memory encoder after apply non-overlapping constraints
|
375 |
-
on the object scores.
|
376 |
-
"""
|
377 |
-
batch_size = self._get_obj_num(inference_state)
|
378 |
-
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
379 |
-
# Optionally, we allow consolidating the temporary outputs at the original
|
380 |
-
# video resolution (to provide a better editing experience for mask prompts).
|
381 |
-
if consolidate_at_video_res:
|
382 |
-
assert not run_mem_encoder, "memory encoder cannot run at video resolution"
|
383 |
-
consolidated_H = inference_state["video_height"]
|
384 |
-
consolidated_W = inference_state["video_width"]
|
385 |
-
consolidated_mask_key = "pred_masks_video_res"
|
386 |
-
else:
|
387 |
-
consolidated_H = consolidated_W = self.image_size // 4
|
388 |
-
consolidated_mask_key = "pred_masks"
|
389 |
-
|
390 |
-
# Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc"
|
391 |
-
# will be added when rerunning the memory encoder after applying non-overlapping
|
392 |
-
# constraints to object scores. Its "pred_masks" are prefilled with a large
|
393 |
-
# negative value (NO_OBJ_SCORE) to represent missing objects.
|
394 |
-
consolidated_out = {
|
395 |
-
"maskmem_features": None,
|
396 |
-
"maskmem_pos_enc": None,
|
397 |
-
consolidated_mask_key: torch.full(
|
398 |
-
size=(batch_size, 1, consolidated_H, consolidated_W),
|
399 |
-
fill_value=NO_OBJ_SCORE,
|
400 |
-
dtype=torch.float32,
|
401 |
-
device=inference_state["storage_device"],
|
402 |
-
),
|
403 |
-
"obj_ptr": torch.full(
|
404 |
-
size=(batch_size, self.hidden_dim),
|
405 |
-
fill_value=NO_OBJ_SCORE,
|
406 |
-
dtype=torch.float32,
|
407 |
-
device=inference_state["device"],
|
408 |
-
),
|
409 |
-
}
|
410 |
-
empty_mask_ptr = None
|
411 |
-
for obj_idx in range(batch_size):
|
412 |
-
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx]
|
413 |
-
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx]
|
414 |
-
out = obj_temp_output_dict[storage_key].get(frame_idx, None)
|
415 |
-
# If the object doesn't appear in "temp_output_dict_per_obj" on this frame,
|
416 |
-
# we fall back and look up its previous output in "output_dict_per_obj".
|
417 |
-
# We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in
|
418 |
-
# "output_dict_per_obj" to find a previous output for this object.
|
419 |
-
if out is None:
|
420 |
-
out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None)
|
421 |
-
if out is None:
|
422 |
-
out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None)
|
423 |
-
# If the object doesn't appear in "output_dict_per_obj" either, we skip it
|
424 |
-
# and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE
|
425 |
-
# placeholder above) and set its object pointer to be a dummy pointer.
|
426 |
-
if out is None:
|
427 |
-
# Fill in dummy object pointers for those objects without any inputs or
|
428 |
-
# tracking outcomes on this frame (only do it under `run_mem_encoder=True`,
|
429 |
-
# i.e. when we need to build the memory for tracking).
|
430 |
-
if run_mem_encoder:
|
431 |
-
if empty_mask_ptr is None:
|
432 |
-
empty_mask_ptr = self._get_empty_mask_ptr(
|
433 |
-
inference_state, frame_idx
|
434 |
-
)
|
435 |
-
# fill object pointer with a dummy pointer (based on an empty mask)
|
436 |
-
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr
|
437 |
-
continue
|
438 |
-
# Add the temporary object output mask to consolidated output mask
|
439 |
-
obj_mask = out["pred_masks"]
|
440 |
-
consolidated_pred_masks = consolidated_out[consolidated_mask_key]
|
441 |
-
if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]:
|
442 |
-
consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask
|
443 |
-
else:
|
444 |
-
# Resize first if temporary object mask has a different resolution
|
445 |
-
resized_obj_mask = torch.nn.functional.interpolate(
|
446 |
-
obj_mask,
|
447 |
-
size=consolidated_pred_masks.shape[-2:],
|
448 |
-
mode="bilinear",
|
449 |
-
align_corners=False,
|
450 |
-
)
|
451 |
-
consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask
|
452 |
-
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"]
|
453 |
-
|
454 |
-
# Optionally, apply non-overlapping constraints on the consolidated scores
|
455 |
-
# and rerun the memory encoder
|
456 |
-
if run_mem_encoder:
|
457 |
-
device = inference_state["device"]
|
458 |
-
high_res_masks = torch.nn.functional.interpolate(
|
459 |
-
consolidated_out["pred_masks"].to(device, non_blocking=True),
|
460 |
-
size=(self.image_size, self.image_size),
|
461 |
-
mode="bilinear",
|
462 |
-
align_corners=False,
|
463 |
-
)
|
464 |
-
if self.non_overlap_masks_for_mem_enc:
|
465 |
-
high_res_masks = self._apply_non_overlapping_constraints(high_res_masks)
|
466 |
-
maskmem_features, maskmem_pos_enc = self._run_memory_encoder(
|
467 |
-
inference_state=inference_state,
|
468 |
-
frame_idx=frame_idx,
|
469 |
-
batch_size=batch_size,
|
470 |
-
high_res_masks=high_res_masks,
|
471 |
-
is_mask_from_pts=True, # these frames are what the user interacted with
|
472 |
-
)
|
473 |
-
consolidated_out["maskmem_features"] = maskmem_features
|
474 |
-
consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc
|
475 |
-
|
476 |
-
return consolidated_out
|
477 |
-
|
478 |
-
def _get_empty_mask_ptr(self, inference_state, frame_idx):
|
479 |
-
"""Get a dummy object pointer based on an empty mask on the current frame."""
|
480 |
-
# A dummy (empty) mask with a single object
|
481 |
-
batch_size = 1
|
482 |
-
mask_inputs = torch.zeros(
|
483 |
-
(batch_size, 1, self.image_size, self.image_size),
|
484 |
-
dtype=torch.float32,
|
485 |
-
device=inference_state["device"],
|
486 |
-
)
|
487 |
-
|
488 |
-
# Retrieve correct image features
|
489 |
-
(
|
490 |
-
_,
|
491 |
-
_,
|
492 |
-
current_vision_feats,
|
493 |
-
current_vision_pos_embeds,
|
494 |
-
feat_sizes,
|
495 |
-
) = self._get_image_feature(inference_state, frame_idx, batch_size)
|
496 |
-
|
497 |
-
# Feed the empty mask and image feature above to get a dummy object pointer
|
498 |
-
current_out = self.track_step(
|
499 |
-
frame_idx=frame_idx,
|
500 |
-
is_init_cond_frame=True,
|
501 |
-
current_vision_feats=current_vision_feats,
|
502 |
-
current_vision_pos_embeds=current_vision_pos_embeds,
|
503 |
-
feat_sizes=feat_sizes,
|
504 |
-
point_inputs=None,
|
505 |
-
mask_inputs=mask_inputs,
|
506 |
-
output_dict={},
|
507 |
-
num_frames=inference_state["num_frames"],
|
508 |
-
track_in_reverse=False,
|
509 |
-
run_mem_encoder=False,
|
510 |
-
prev_sam_mask_logits=None,
|
511 |
-
)
|
512 |
-
return current_out["obj_ptr"]
|
513 |
-
|
514 |
-
@torch.inference_mode()
|
515 |
-
def propagate_in_video_preflight(self, inference_state):
|
516 |
-
"""Prepare inference_state and consolidate temporary outputs before tracking."""
|
517 |
-
# Tracking has started and we don't allow adding new objects until session is reset.
|
518 |
-
inference_state["tracking_has_started"] = True
|
519 |
-
batch_size = self._get_obj_num(inference_state)
|
520 |
-
|
521 |
-
# Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and
|
522 |
-
# add them into "output_dict".
|
523 |
-
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"]
|
524 |
-
output_dict = inference_state["output_dict"]
|
525 |
-
# "consolidated_frame_inds" contains indices of those frames where consolidated
|
526 |
-
# temporary outputs have been added (either in this call or any previous calls
|
527 |
-
# to `propagate_in_video_preflight`).
|
528 |
-
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
|
529 |
-
for is_cond in [False, True]:
|
530 |
-
# Separately consolidate conditioning and non-conditioning temp outptus
|
531 |
-
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs"
|
532 |
-
# Find all the frames that contain temporary outputs for any objects
|
533 |
-
# (these should be the frames that have just received clicks for mask inputs
|
534 |
-
# via `add_new_points` or `add_new_mask`)
|
535 |
-
temp_frame_inds = set()
|
536 |
-
for obj_temp_output_dict in temp_output_dict_per_obj.values():
|
537 |
-
temp_frame_inds.update(obj_temp_output_dict[storage_key].keys())
|
538 |
-
consolidated_frame_inds[storage_key].update(temp_frame_inds)
|
539 |
-
# consolidate the temprary output across all objects on this frame
|
540 |
-
for frame_idx in temp_frame_inds:
|
541 |
-
consolidated_out = self._consolidate_temp_output_across_obj(
|
542 |
-
inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True
|
543 |
-
)
|
544 |
-
# merge them into "output_dict" and also create per-object slices
|
545 |
-
output_dict[storage_key][frame_idx] = consolidated_out
|
546 |
-
self._add_output_per_object(
|
547 |
-
inference_state, frame_idx, consolidated_out, storage_key
|
548 |
-
)
|
549 |
-
clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
|
550 |
-
self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
|
551 |
-
)
|
552 |
-
if clear_non_cond_mem:
|
553 |
-
# clear non-conditioning memory of the surrounding frames
|
554 |
-
self._clear_non_cond_mem_around_input(inference_state, frame_idx)
|
555 |
-
|
556 |
-
# clear temporary outputs in `temp_output_dict_per_obj`
|
557 |
-
for obj_temp_output_dict in temp_output_dict_per_obj.values():
|
558 |
-
obj_temp_output_dict[storage_key].clear()
|
559 |
-
|
560 |
-
# edge case: if an output is added to "cond_frame_outputs", we remove any prior
|
561 |
-
# output on the same frame in "non_cond_frame_outputs"
|
562 |
-
for frame_idx in output_dict["cond_frame_outputs"]:
|
563 |
-
output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
|
564 |
-
for obj_output_dict in inference_state["output_dict_per_obj"].values():
|
565 |
-
for frame_idx in obj_output_dict["cond_frame_outputs"]:
|
566 |
-
obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None)
|
567 |
-
for frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
|
568 |
-
assert frame_idx in output_dict["cond_frame_outputs"]
|
569 |
-
consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx)
|
570 |
-
|
571 |
-
# Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames
|
572 |
-
# with either points or mask inputs (which should be true under a correct workflow).
|
573 |
-
all_consolidated_frame_inds = (
|
574 |
-
consolidated_frame_inds["cond_frame_outputs"]
|
575 |
-
| consolidated_frame_inds["non_cond_frame_outputs"]
|
576 |
-
)
|
577 |
-
input_frames_inds = set()
|
578 |
-
for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values():
|
579 |
-
input_frames_inds.update(point_inputs_per_frame.keys())
|
580 |
-
for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values():
|
581 |
-
input_frames_inds.update(mask_inputs_per_frame.keys())
|
582 |
-
assert all_consolidated_frame_inds == input_frames_inds
|
583 |
-
|
584 |
-
@torch.inference_mode()
|
585 |
-
def propagate_in_video(
|
586 |
-
self,
|
587 |
-
inference_state,
|
588 |
-
start_frame_idx=None,
|
589 |
-
max_frame_num_to_track=None,
|
590 |
-
reverse=False,
|
591 |
-
):
|
592 |
-
"""Propagate the input points across frames to track in the entire video."""
|
593 |
-
self.propagate_in_video_preflight(inference_state)
|
594 |
-
|
595 |
-
output_dict = inference_state["output_dict"]
|
596 |
-
consolidated_frame_inds = inference_state["consolidated_frame_inds"]
|
597 |
-
obj_ids = inference_state["obj_ids"]
|
598 |
-
num_frames = inference_state["num_frames"]
|
599 |
-
batch_size = self._get_obj_num(inference_state)
|
600 |
-
if len(output_dict["cond_frame_outputs"]) == 0:
|
601 |
-
raise RuntimeError("No points are provided; please add points first")
|
602 |
-
clear_non_cond_mem = self.clear_non_cond_mem_around_input and (
|
603 |
-
self.clear_non_cond_mem_for_multi_obj or batch_size <= 1
|
604 |
-
)
|
605 |
-
|
606 |
-
# set start index, end index, and processing order
|
607 |
-
if start_frame_idx is None:
|
608 |
-
# default: start from the earliest frame with input points
|
609 |
-
start_frame_idx = min(output_dict["cond_frame_outputs"])
|
610 |
-
if max_frame_num_to_track is None:
|
611 |
-
# default: track all the frames in the video
|
612 |
-
max_frame_num_to_track = num_frames
|
613 |
-
if reverse:
|
614 |
-
end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0)
|
615 |
-
if start_frame_idx > 0:
|
616 |
-
processing_order = range(start_frame_idx, end_frame_idx - 1, -1)
|
617 |
-
else:
|
618 |
-
processing_order = [] # skip reverse tracking if starting from frame 0
|
619 |
-
else:
|
620 |
-
end_frame_idx = min(
|
621 |
-
start_frame_idx + max_frame_num_to_track, num_frames - 1
|
622 |
-
)
|
623 |
-
processing_order = range(start_frame_idx, end_frame_idx + 1)
|
624 |
-
|
625 |
-
for frame_idx in tqdm(processing_order, desc="propagate in video"):
|
626 |
-
# We skip those frames already in consolidated outputs (these are frames
|
627 |
-
# that received input clicks or mask). Note that we cannot directly run
|
628 |
-
# batched forward on them via `_run_single_frame_inference` because the
|
629 |
-
# number of clicks on each object might be different.
|
630 |
-
if frame_idx in consolidated_frame_inds["cond_frame_outputs"]:
|
631 |
-
storage_key = "cond_frame_outputs"
|
632 |
-
current_out = output_dict[storage_key][frame_idx]
|
633 |
-
pred_masks = current_out["pred_masks"]
|
634 |
-
if clear_non_cond_mem:
|
635 |
-
# clear non-conditioning memory of the surrounding frames
|
636 |
-
self._clear_non_cond_mem_around_input(inference_state, frame_idx)
|
637 |
-
elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]:
|
638 |
-
storage_key = "non_cond_frame_outputs"
|
639 |
-
current_out = output_dict[storage_key][frame_idx]
|
640 |
-
pred_masks = current_out["pred_masks"]
|
641 |
-
else:
|
642 |
-
storage_key = "non_cond_frame_outputs"
|
643 |
-
current_out, pred_masks = self._run_single_frame_inference(
|
644 |
-
inference_state=inference_state,
|
645 |
-
output_dict=output_dict,
|
646 |
-
frame_idx=frame_idx,
|
647 |
-
batch_size=batch_size,
|
648 |
-
is_init_cond_frame=False,
|
649 |
-
point_inputs=None,
|
650 |
-
mask_inputs=None,
|
651 |
-
reverse=reverse,
|
652 |
-
run_mem_encoder=True,
|
653 |
-
)
|
654 |
-
output_dict[storage_key][frame_idx] = current_out
|
655 |
-
# Create slices of per-object outputs for subsequent interaction with each
|
656 |
-
# individual object after tracking.
|
657 |
-
self._add_output_per_object(
|
658 |
-
inference_state, frame_idx, current_out, storage_key
|
659 |
-
)
|
660 |
-
inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse}
|
661 |
-
|
662 |
-
# Resize the output mask to the original video resolution (we directly use
|
663 |
-
# the mask scores on GPU for output to avoid any CPU conversion in between)
|
664 |
-
_, video_res_masks = self._get_orig_video_res_output(
|
665 |
-
inference_state, pred_masks
|
666 |
-
)
|
667 |
-
yield frame_idx, obj_ids, video_res_masks
|
668 |
-
|
669 |
-
def _add_output_per_object(
|
670 |
-
self, inference_state, frame_idx, current_out, storage_key
|
671 |
-
):
|
672 |
-
"""
|
673 |
-
Split a multi-object output into per-object output slices and add them into
|
674 |
-
`output_dict_per_obj`. The resulting slices share the same tensor storage.
|
675 |
-
"""
|
676 |
-
maskmem_features = current_out["maskmem_features"]
|
677 |
-
assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor)
|
678 |
-
|
679 |
-
maskmem_pos_enc = current_out["maskmem_pos_enc"]
|
680 |
-
assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list)
|
681 |
-
|
682 |
-
output_dict_per_obj = inference_state["output_dict_per_obj"]
|
683 |
-
for obj_idx, obj_output_dict in output_dict_per_obj.items():
|
684 |
-
obj_slice = slice(obj_idx, obj_idx + 1)
|
685 |
-
obj_out = {
|
686 |
-
"maskmem_features": None,
|
687 |
-
"maskmem_pos_enc": None,
|
688 |
-
"pred_masks": current_out["pred_masks"][obj_slice],
|
689 |
-
"obj_ptr": current_out["obj_ptr"][obj_slice],
|
690 |
-
}
|
691 |
-
if maskmem_features is not None:
|
692 |
-
obj_out["maskmem_features"] = maskmem_features[obj_slice]
|
693 |
-
if maskmem_pos_enc is not None:
|
694 |
-
obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc]
|
695 |
-
obj_output_dict[storage_key][frame_idx] = obj_out
|
696 |
-
|
697 |
-
@torch.inference_mode()
|
698 |
-
def reset_state(self, inference_state):
|
699 |
-
"""Remove all input points or mask in all frames throughout the video."""
|
700 |
-
self._reset_tracking_results(inference_state)
|
701 |
-
# Remove all object ids
|
702 |
-
inference_state["obj_id_to_idx"].clear()
|
703 |
-
inference_state["obj_idx_to_id"].clear()
|
704 |
-
inference_state["obj_ids"].clear()
|
705 |
-
inference_state["point_inputs_per_obj"].clear()
|
706 |
-
inference_state["mask_inputs_per_obj"].clear()
|
707 |
-
inference_state["output_dict_per_obj"].clear()
|
708 |
-
inference_state["temp_output_dict_per_obj"].clear()
|
709 |
-
|
710 |
-
def _reset_tracking_results(self, inference_state):
|
711 |
-
"""Reset all tracking inputs and results across the videos."""
|
712 |
-
for v in inference_state["point_inputs_per_obj"].values():
|
713 |
-
v.clear()
|
714 |
-
for v in inference_state["mask_inputs_per_obj"].values():
|
715 |
-
v.clear()
|
716 |
-
for v in inference_state["output_dict_per_obj"].values():
|
717 |
-
v["cond_frame_outputs"].clear()
|
718 |
-
v["non_cond_frame_outputs"].clear()
|
719 |
-
for v in inference_state["temp_output_dict_per_obj"].values():
|
720 |
-
v["cond_frame_outputs"].clear()
|
721 |
-
v["non_cond_frame_outputs"].clear()
|
722 |
-
inference_state["output_dict"]["cond_frame_outputs"].clear()
|
723 |
-
inference_state["output_dict"]["non_cond_frame_outputs"].clear()
|
724 |
-
inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear()
|
725 |
-
inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear()
|
726 |
-
inference_state["tracking_has_started"] = False
|
727 |
-
inference_state["frames_already_tracked"].clear()
|
728 |
-
|
729 |
-
def _get_image_feature(self, inference_state, frame_idx, batch_size):
|
730 |
-
"""Compute the image features on a given frame."""
|
731 |
-
# Look up in the cache first
|
732 |
-
image, backbone_out = inference_state["cached_features"].get(
|
733 |
-
frame_idx, (None, None)
|
734 |
-
)
|
735 |
-
if backbone_out is None:
|
736 |
-
# Cache miss -- we will run inference on a single image
|
737 |
-
image = inference_state["images"][frame_idx].cuda().float().unsqueeze(0)
|
738 |
-
backbone_out = self.forward_image(image)
|
739 |
-
# Cache the most recent frame's feature (for repeated interactions with
|
740 |
-
# a frame; we can use an LRU cache for more frames in the future).
|
741 |
-
inference_state["cached_features"] = {frame_idx: (image, backbone_out)}
|
742 |
-
|
743 |
-
# expand the features to have the same dimension as the number of objects
|
744 |
-
expanded_image = image.expand(batch_size, -1, -1, -1)
|
745 |
-
expanded_backbone_out = {
|
746 |
-
"backbone_fpn": backbone_out["backbone_fpn"].copy(),
|
747 |
-
"vision_pos_enc": backbone_out["vision_pos_enc"].copy(),
|
748 |
-
}
|
749 |
-
for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]):
|
750 |
-
expanded_backbone_out["backbone_fpn"][i] = feat.expand(
|
751 |
-
batch_size, -1, -1, -1
|
752 |
-
)
|
753 |
-
for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]):
|
754 |
-
pos = pos.expand(batch_size, -1, -1, -1)
|
755 |
-
expanded_backbone_out["vision_pos_enc"][i] = pos
|
756 |
-
|
757 |
-
features = self._prepare_backbone_features(expanded_backbone_out)
|
758 |
-
features = (expanded_image,) + features
|
759 |
-
return features
|
760 |
-
|
761 |
-
def _run_single_frame_inference(
|
762 |
-
self,
|
763 |
-
inference_state,
|
764 |
-
output_dict,
|
765 |
-
frame_idx,
|
766 |
-
batch_size,
|
767 |
-
is_init_cond_frame,
|
768 |
-
point_inputs,
|
769 |
-
mask_inputs,
|
770 |
-
reverse,
|
771 |
-
run_mem_encoder,
|
772 |
-
prev_sam_mask_logits=None,
|
773 |
-
):
|
774 |
-
"""Run tracking on a single frame based on current inputs and previous memory."""
|
775 |
-
# Retrieve correct image features
|
776 |
-
(
|
777 |
-
_,
|
778 |
-
_,
|
779 |
-
current_vision_feats,
|
780 |
-
current_vision_pos_embeds,
|
781 |
-
feat_sizes,
|
782 |
-
) = self._get_image_feature(inference_state, frame_idx, batch_size)
|
783 |
-
|
784 |
-
# point and mask should not appear as input simultaneously on the same frame
|
785 |
-
assert point_inputs is None or mask_inputs is None
|
786 |
-
current_out = self.track_step(
|
787 |
-
frame_idx=frame_idx,
|
788 |
-
is_init_cond_frame=is_init_cond_frame,
|
789 |
-
current_vision_feats=current_vision_feats,
|
790 |
-
current_vision_pos_embeds=current_vision_pos_embeds,
|
791 |
-
feat_sizes=feat_sizes,
|
792 |
-
point_inputs=point_inputs,
|
793 |
-
mask_inputs=mask_inputs,
|
794 |
-
output_dict=output_dict,
|
795 |
-
num_frames=inference_state["num_frames"],
|
796 |
-
track_in_reverse=reverse,
|
797 |
-
run_mem_encoder=run_mem_encoder,
|
798 |
-
prev_sam_mask_logits=prev_sam_mask_logits,
|
799 |
-
)
|
800 |
-
|
801 |
-
# optionally offload the output to CPU memory to save GPU space
|
802 |
-
storage_device = inference_state["storage_device"]
|
803 |
-
maskmem_features = current_out["maskmem_features"]
|
804 |
-
if maskmem_features is not None:
|
805 |
-
maskmem_features = maskmem_features.to(torch.bfloat16)
|
806 |
-
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
|
807 |
-
pred_masks_gpu = current_out["pred_masks"]
|
808 |
-
# potentially fill holes in the predicted masks
|
809 |
-
if self.fill_hole_area > 0:
|
810 |
-
pred_masks_gpu = fill_holes_in_mask_scores(
|
811 |
-
pred_masks_gpu, self.fill_hole_area
|
812 |
-
)
|
813 |
-
pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True)
|
814 |
-
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
815 |
-
maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out)
|
816 |
-
# object pointer is a small tensor, so we always keep it on GPU memory for fast access
|
817 |
-
obj_ptr = current_out["obj_ptr"]
|
818 |
-
# make a compact version of this frame's output to reduce the state size
|
819 |
-
compact_current_out = {
|
820 |
-
"maskmem_features": maskmem_features,
|
821 |
-
"maskmem_pos_enc": maskmem_pos_enc,
|
822 |
-
"pred_masks": pred_masks,
|
823 |
-
"obj_ptr": obj_ptr,
|
824 |
-
}
|
825 |
-
return compact_current_out, pred_masks_gpu
|
826 |
-
|
827 |
-
def _run_memory_encoder(
|
828 |
-
self, inference_state, frame_idx, batch_size, high_res_masks, is_mask_from_pts
|
829 |
-
):
|
830 |
-
"""
|
831 |
-
Run the memory encoder on `high_res_masks`. This is usually after applying
|
832 |
-
non-overlapping constraints to object scores. Since their scores changed, their
|
833 |
-
memory also need to be computed again with the memory encoder.
|
834 |
-
"""
|
835 |
-
# Retrieve correct image features
|
836 |
-
_, _, current_vision_feats, _, feat_sizes = self._get_image_feature(
|
837 |
-
inference_state, frame_idx, batch_size
|
838 |
-
)
|
839 |
-
maskmem_features, maskmem_pos_enc = self._encode_new_memory(
|
840 |
-
current_vision_feats=current_vision_feats,
|
841 |
-
feat_sizes=feat_sizes,
|
842 |
-
pred_masks_high_res=high_res_masks,
|
843 |
-
is_mask_from_pts=is_mask_from_pts,
|
844 |
-
)
|
845 |
-
|
846 |
-
# optionally offload the output to CPU memory to save GPU space
|
847 |
-
storage_device = inference_state["storage_device"]
|
848 |
-
maskmem_features = maskmem_features.to(torch.bfloat16)
|
849 |
-
maskmem_features = maskmem_features.to(storage_device, non_blocking=True)
|
850 |
-
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it
|
851 |
-
maskmem_pos_enc = self._get_maskmem_pos_enc(
|
852 |
-
inference_state, {"maskmem_pos_enc": maskmem_pos_enc}
|
853 |
-
)
|
854 |
-
return maskmem_features, maskmem_pos_enc
|
855 |
-
|
856 |
-
def _get_maskmem_pos_enc(self, inference_state, current_out):
|
857 |
-
"""
|
858 |
-
`maskmem_pos_enc` is the same across frames and objects, so we cache it as
|
859 |
-
a constant in the inference session to reduce session storage size.
|
860 |
-
"""
|
861 |
-
model_constants = inference_state["constants"]
|
862 |
-
# "out_maskmem_pos_enc" should be either a list of tensors or None
|
863 |
-
out_maskmem_pos_enc = current_out["maskmem_pos_enc"]
|
864 |
-
if out_maskmem_pos_enc is not None:
|
865 |
-
if "maskmem_pos_enc" not in model_constants:
|
866 |
-
assert isinstance(out_maskmem_pos_enc, list)
|
867 |
-
# only take the slice for one object, since it's same across objects
|
868 |
-
maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc]
|
869 |
-
model_constants["maskmem_pos_enc"] = maskmem_pos_enc
|
870 |
-
else:
|
871 |
-
maskmem_pos_enc = model_constants["maskmem_pos_enc"]
|
872 |
-
# expand the cached maskmem_pos_enc to the actual batch size
|
873 |
-
batch_size = out_maskmem_pos_enc[0].size(0)
|
874 |
-
expanded_maskmem_pos_enc = [
|
875 |
-
x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc
|
876 |
-
]
|
877 |
-
else:
|
878 |
-
expanded_maskmem_pos_enc = None
|
879 |
-
return expanded_maskmem_pos_enc
|
880 |
-
|
881 |
-
def _clear_non_cond_mem_around_input(self, inference_state, frame_idx):
|
882 |
-
"""
|
883 |
-
Remove the non-conditioning memory around the input frame. When users provide
|
884 |
-
correction clicks, the surrounding frames' non-conditioning memories can still
|
885 |
-
contain outdated object appearance information and could confuse the model.
|
886 |
-
|
887 |
-
This method clears those non-conditioning memories surrounding the interacted
|
888 |
-
frame to avoid giving the model both old and new information about the object.
|
889 |
-
"""
|
890 |
-
r = self.memory_temporal_stride_for_eval
|
891 |
-
frame_idx_begin = frame_idx - r * self.num_maskmem
|
892 |
-
frame_idx_end = frame_idx + r * self.num_maskmem
|
893 |
-
output_dict = inference_state["output_dict"]
|
894 |
-
non_cond_frame_outputs = output_dict["non_cond_frame_outputs"]
|
895 |
-
for t in range(frame_idx_begin, frame_idx_end + 1):
|
896 |
-
non_cond_frame_outputs.pop(t, None)
|
897 |
-
for obj_output_dict in inference_state["output_dict_per_obj"].values():
|
898 |
-
obj_output_dict["non_cond_frame_outputs"].pop(t, None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/utils/__init__.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
|
|
|
|
|
|
|
|
|
|
|
sam2/utils/amg.py
DELETED
@@ -1,348 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
import math
|
8 |
-
from copy import deepcopy
|
9 |
-
from itertools import product
|
10 |
-
from typing import Any, Dict, Generator, ItemsView, List, Tuple
|
11 |
-
|
12 |
-
import numpy as np
|
13 |
-
import torch
|
14 |
-
|
15 |
-
# Very lightly adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/utils/amg.py
|
16 |
-
|
17 |
-
|
18 |
-
class MaskData:
|
19 |
-
"""
|
20 |
-
A structure for storing masks and their related data in batched format.
|
21 |
-
Implements basic filtering and concatenation.
|
22 |
-
"""
|
23 |
-
|
24 |
-
def __init__(self, **kwargs) -> None:
|
25 |
-
for v in kwargs.values():
|
26 |
-
assert isinstance(
|
27 |
-
v, (list, np.ndarray, torch.Tensor)
|
28 |
-
), "MaskData only supports list, numpy arrays, and torch tensors."
|
29 |
-
self._stats = dict(**kwargs)
|
30 |
-
|
31 |
-
def __setitem__(self, key: str, item: Any) -> None:
|
32 |
-
assert isinstance(
|
33 |
-
item, (list, np.ndarray, torch.Tensor)
|
34 |
-
), "MaskData only supports list, numpy arrays, and torch tensors."
|
35 |
-
self._stats[key] = item
|
36 |
-
|
37 |
-
def __delitem__(self, key: str) -> None:
|
38 |
-
del self._stats[key]
|
39 |
-
|
40 |
-
def __getitem__(self, key: str) -> Any:
|
41 |
-
return self._stats[key]
|
42 |
-
|
43 |
-
def items(self) -> ItemsView[str, Any]:
|
44 |
-
return self._stats.items()
|
45 |
-
|
46 |
-
def filter(self, keep: torch.Tensor) -> None:
|
47 |
-
for k, v in self._stats.items():
|
48 |
-
if v is None:
|
49 |
-
self._stats[k] = None
|
50 |
-
elif isinstance(v, torch.Tensor):
|
51 |
-
self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
|
52 |
-
elif isinstance(v, np.ndarray):
|
53 |
-
self._stats[k] = v[keep.detach().cpu().numpy()]
|
54 |
-
elif isinstance(v, list) and keep.dtype == torch.bool:
|
55 |
-
self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
|
56 |
-
elif isinstance(v, list):
|
57 |
-
self._stats[k] = [v[i] for i in keep]
|
58 |
-
else:
|
59 |
-
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
|
60 |
-
|
61 |
-
def cat(self, new_stats: "MaskData") -> None:
|
62 |
-
for k, v in new_stats.items():
|
63 |
-
if k not in self._stats or self._stats[k] is None:
|
64 |
-
self._stats[k] = deepcopy(v)
|
65 |
-
elif isinstance(v, torch.Tensor):
|
66 |
-
self._stats[k] = torch.cat([self._stats[k], v], dim=0)
|
67 |
-
elif isinstance(v, np.ndarray):
|
68 |
-
self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
|
69 |
-
elif isinstance(v, list):
|
70 |
-
self._stats[k] = self._stats[k] + deepcopy(v)
|
71 |
-
else:
|
72 |
-
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
|
73 |
-
|
74 |
-
def to_numpy(self) -> None:
|
75 |
-
for k, v in self._stats.items():
|
76 |
-
if isinstance(v, torch.Tensor):
|
77 |
-
self._stats[k] = v.float().detach().cpu().numpy()
|
78 |
-
|
79 |
-
|
80 |
-
def is_box_near_crop_edge(
|
81 |
-
boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
|
82 |
-
) -> torch.Tensor:
|
83 |
-
"""Filter masks at the edge of a crop, but not at the edge of the original image."""
|
84 |
-
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
|
85 |
-
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
|
86 |
-
boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
|
87 |
-
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
|
88 |
-
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
|
89 |
-
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
|
90 |
-
return torch.any(near_crop_edge, dim=1)
|
91 |
-
|
92 |
-
|
93 |
-
def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
|
94 |
-
box_xywh = deepcopy(box_xyxy)
|
95 |
-
box_xywh[2] = box_xywh[2] - box_xywh[0]
|
96 |
-
box_xywh[3] = box_xywh[3] - box_xywh[1]
|
97 |
-
return box_xywh
|
98 |
-
|
99 |
-
|
100 |
-
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
|
101 |
-
assert len(args) > 0 and all(
|
102 |
-
len(a) == len(args[0]) for a in args
|
103 |
-
), "Batched iteration must have inputs of all the same size."
|
104 |
-
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
|
105 |
-
for b in range(n_batches):
|
106 |
-
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
|
107 |
-
|
108 |
-
|
109 |
-
def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
|
110 |
-
"""
|
111 |
-
Encodes masks to an uncompressed RLE, in the format expected by
|
112 |
-
pycoco tools.
|
113 |
-
"""
|
114 |
-
# Put in fortran order and flatten h,w
|
115 |
-
b, h, w = tensor.shape
|
116 |
-
tensor = tensor.permute(0, 2, 1).flatten(1)
|
117 |
-
|
118 |
-
# Compute change indices
|
119 |
-
diff = tensor[:, 1:] ^ tensor[:, :-1]
|
120 |
-
change_indices = diff.nonzero()
|
121 |
-
|
122 |
-
# Encode run length
|
123 |
-
out = []
|
124 |
-
for i in range(b):
|
125 |
-
cur_idxs = change_indices[change_indices[:, 0] == i, 1]
|
126 |
-
cur_idxs = torch.cat(
|
127 |
-
[
|
128 |
-
torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
129 |
-
cur_idxs + 1,
|
130 |
-
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
131 |
-
]
|
132 |
-
)
|
133 |
-
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
|
134 |
-
counts = [] if tensor[i, 0] == 0 else [0]
|
135 |
-
counts.extend(btw_idxs.detach().cpu().tolist())
|
136 |
-
out.append({"size": [h, w], "counts": counts})
|
137 |
-
return out
|
138 |
-
|
139 |
-
|
140 |
-
def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
|
141 |
-
"""Compute a binary mask from an uncompressed RLE."""
|
142 |
-
h, w = rle["size"]
|
143 |
-
mask = np.empty(h * w, dtype=bool)
|
144 |
-
idx = 0
|
145 |
-
parity = False
|
146 |
-
for count in rle["counts"]:
|
147 |
-
mask[idx : idx + count] = parity
|
148 |
-
idx += count
|
149 |
-
parity ^= True
|
150 |
-
mask = mask.reshape(w, h)
|
151 |
-
return mask.transpose() # Put in C order
|
152 |
-
|
153 |
-
|
154 |
-
def area_from_rle(rle: Dict[str, Any]) -> int:
|
155 |
-
return sum(rle["counts"][1::2])
|
156 |
-
|
157 |
-
|
158 |
-
def calculate_stability_score(
|
159 |
-
masks: torch.Tensor, mask_threshold: float, threshold_offset: float
|
160 |
-
) -> torch.Tensor:
|
161 |
-
"""
|
162 |
-
Computes the stability score for a batch of masks. The stability
|
163 |
-
score is the IoU between the binary masks obtained by thresholding
|
164 |
-
the predicted mask logits at high and low values.
|
165 |
-
"""
|
166 |
-
# One mask is always contained inside the other.
|
167 |
-
# Save memory by preventing unnecessary cast to torch.int64
|
168 |
-
intersections = (
|
169 |
-
(masks > (mask_threshold + threshold_offset))
|
170 |
-
.sum(-1, dtype=torch.int16)
|
171 |
-
.sum(-1, dtype=torch.int32)
|
172 |
-
)
|
173 |
-
unions = (
|
174 |
-
(masks > (mask_threshold - threshold_offset))
|
175 |
-
.sum(-1, dtype=torch.int16)
|
176 |
-
.sum(-1, dtype=torch.int32)
|
177 |
-
)
|
178 |
-
return intersections / unions
|
179 |
-
|
180 |
-
|
181 |
-
def build_point_grid(n_per_side: int) -> np.ndarray:
|
182 |
-
"""Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
|
183 |
-
offset = 1 / (2 * n_per_side)
|
184 |
-
points_one_side = np.linspace(offset, 1 - offset, n_per_side)
|
185 |
-
points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
|
186 |
-
points_y = np.tile(points_one_side[:, None], (1, n_per_side))
|
187 |
-
points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
|
188 |
-
return points
|
189 |
-
|
190 |
-
|
191 |
-
def build_all_layer_point_grids(
|
192 |
-
n_per_side: int, n_layers: int, scale_per_layer: int
|
193 |
-
) -> List[np.ndarray]:
|
194 |
-
"""Generates point grids for all crop layers."""
|
195 |
-
points_by_layer = []
|
196 |
-
for i in range(n_layers + 1):
|
197 |
-
n_points = int(n_per_side / (scale_per_layer**i))
|
198 |
-
points_by_layer.append(build_point_grid(n_points))
|
199 |
-
return points_by_layer
|
200 |
-
|
201 |
-
|
202 |
-
def generate_crop_boxes(
|
203 |
-
im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
|
204 |
-
) -> Tuple[List[List[int]], List[int]]:
|
205 |
-
"""
|
206 |
-
Generates a list of crop boxes of different sizes. Each layer
|
207 |
-
has (2**i)**2 boxes for the ith layer.
|
208 |
-
"""
|
209 |
-
crop_boxes, layer_idxs = [], []
|
210 |
-
im_h, im_w = im_size
|
211 |
-
short_side = min(im_h, im_w)
|
212 |
-
|
213 |
-
# Original image
|
214 |
-
crop_boxes.append([0, 0, im_w, im_h])
|
215 |
-
layer_idxs.append(0)
|
216 |
-
|
217 |
-
def crop_len(orig_len, n_crops, overlap):
|
218 |
-
return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
|
219 |
-
|
220 |
-
for i_layer in range(n_layers):
|
221 |
-
n_crops_per_side = 2 ** (i_layer + 1)
|
222 |
-
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
|
223 |
-
|
224 |
-
crop_w = crop_len(im_w, n_crops_per_side, overlap)
|
225 |
-
crop_h = crop_len(im_h, n_crops_per_side, overlap)
|
226 |
-
|
227 |
-
crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
|
228 |
-
crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
|
229 |
-
|
230 |
-
# Crops in XYWH format
|
231 |
-
for x0, y0 in product(crop_box_x0, crop_box_y0):
|
232 |
-
box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
|
233 |
-
crop_boxes.append(box)
|
234 |
-
layer_idxs.append(i_layer + 1)
|
235 |
-
|
236 |
-
return crop_boxes, layer_idxs
|
237 |
-
|
238 |
-
|
239 |
-
def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
240 |
-
x0, y0, _, _ = crop_box
|
241 |
-
offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
|
242 |
-
# Check if boxes has a channel dimension
|
243 |
-
if len(boxes.shape) == 3:
|
244 |
-
offset = offset.unsqueeze(1)
|
245 |
-
return boxes + offset
|
246 |
-
|
247 |
-
|
248 |
-
def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
249 |
-
x0, y0, _, _ = crop_box
|
250 |
-
offset = torch.tensor([[x0, y0]], device=points.device)
|
251 |
-
# Check if points has a channel dimension
|
252 |
-
if len(points.shape) == 3:
|
253 |
-
offset = offset.unsqueeze(1)
|
254 |
-
return points + offset
|
255 |
-
|
256 |
-
|
257 |
-
def uncrop_masks(
|
258 |
-
masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int
|
259 |
-
) -> torch.Tensor:
|
260 |
-
x0, y0, x1, y1 = crop_box
|
261 |
-
if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
|
262 |
-
return masks
|
263 |
-
# Coordinate transform masks
|
264 |
-
pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
|
265 |
-
pad = (x0, pad_x - x0, y0, pad_y - y0)
|
266 |
-
return torch.nn.functional.pad(masks, pad, value=0)
|
267 |
-
|
268 |
-
|
269 |
-
def remove_small_regions(
|
270 |
-
mask: np.ndarray, area_thresh: float, mode: str
|
271 |
-
) -> Tuple[np.ndarray, bool]:
|
272 |
-
"""
|
273 |
-
Removes small disconnected regions and holes in a mask. Returns the
|
274 |
-
mask and an indicator of if the mask has been modified.
|
275 |
-
"""
|
276 |
-
import cv2 # type: ignore
|
277 |
-
|
278 |
-
assert mode in ["holes", "islands"]
|
279 |
-
correct_holes = mode == "holes"
|
280 |
-
working_mask = (correct_holes ^ mask).astype(np.uint8)
|
281 |
-
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
|
282 |
-
sizes = stats[:, -1][1:] # Row 0 is background label
|
283 |
-
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
|
284 |
-
if len(small_regions) == 0:
|
285 |
-
return mask, False
|
286 |
-
fill_labels = [0] + small_regions
|
287 |
-
if not correct_holes:
|
288 |
-
fill_labels = [i for i in range(n_labels) if i not in fill_labels]
|
289 |
-
# If every region is below threshold, keep largest
|
290 |
-
if len(fill_labels) == 0:
|
291 |
-
fill_labels = [int(np.argmax(sizes)) + 1]
|
292 |
-
mask = np.isin(regions, fill_labels)
|
293 |
-
return mask, True
|
294 |
-
|
295 |
-
|
296 |
-
def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
|
297 |
-
from pycocotools import mask as mask_utils # type: ignore
|
298 |
-
|
299 |
-
h, w = uncompressed_rle["size"]
|
300 |
-
rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
|
301 |
-
rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
|
302 |
-
return rle
|
303 |
-
|
304 |
-
|
305 |
-
def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
|
306 |
-
"""
|
307 |
-
Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
|
308 |
-
an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
|
309 |
-
"""
|
310 |
-
# torch.max below raises an error on empty inputs, just skip in this case
|
311 |
-
if torch.numel(masks) == 0:
|
312 |
-
return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
|
313 |
-
|
314 |
-
# Normalize shape to CxHxW
|
315 |
-
shape = masks.shape
|
316 |
-
h, w = shape[-2:]
|
317 |
-
if len(shape) > 2:
|
318 |
-
masks = masks.flatten(0, -3)
|
319 |
-
else:
|
320 |
-
masks = masks.unsqueeze(0)
|
321 |
-
|
322 |
-
# Get top and bottom edges
|
323 |
-
in_height, _ = torch.max(masks, dim=-1)
|
324 |
-
in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
|
325 |
-
bottom_edges, _ = torch.max(in_height_coords, dim=-1)
|
326 |
-
in_height_coords = in_height_coords + h * (~in_height)
|
327 |
-
top_edges, _ = torch.min(in_height_coords, dim=-1)
|
328 |
-
|
329 |
-
# Get left and right edges
|
330 |
-
in_width, _ = torch.max(masks, dim=-2)
|
331 |
-
in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
|
332 |
-
right_edges, _ = torch.max(in_width_coords, dim=-1)
|
333 |
-
in_width_coords = in_width_coords + w * (~in_width)
|
334 |
-
left_edges, _ = torch.min(in_width_coords, dim=-1)
|
335 |
-
|
336 |
-
# If the mask is empty the right edge will be to the left of the left edge.
|
337 |
-
# Replace these boxes with [0, 0, 0, 0]
|
338 |
-
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
|
339 |
-
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
|
340 |
-
out = out * (~empty_filter).unsqueeze(-1)
|
341 |
-
|
342 |
-
# Return to original shape
|
343 |
-
if len(shape) > 2:
|
344 |
-
out = out.reshape(*shape[:-2], 4)
|
345 |
-
else:
|
346 |
-
out = out[0]
|
347 |
-
|
348 |
-
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/utils/misc.py
DELETED
@@ -1,238 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
import os
|
8 |
-
import warnings
|
9 |
-
from threading import Thread
|
10 |
-
|
11 |
-
import numpy as np
|
12 |
-
import torch
|
13 |
-
from PIL import Image
|
14 |
-
from tqdm import tqdm
|
15 |
-
|
16 |
-
|
17 |
-
def get_sdpa_settings():
|
18 |
-
if torch.cuda.is_available():
|
19 |
-
old_gpu = torch.cuda.get_device_properties(0).major < 7
|
20 |
-
# only use Flash Attention on Ampere (8.0) or newer GPUs
|
21 |
-
use_flash_attn = torch.cuda.get_device_properties(0).major >= 8
|
22 |
-
if not use_flash_attn:
|
23 |
-
warnings.warn(
|
24 |
-
"Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.",
|
25 |
-
category=UserWarning,
|
26 |
-
stacklevel=2,
|
27 |
-
)
|
28 |
-
# keep math kernel for PyTorch versions before 2.2 (Flash Attention v2 is only
|
29 |
-
# available on PyTorch 2.2+, while Flash Attention v1 cannot handle all cases)
|
30 |
-
pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2])
|
31 |
-
if pytorch_version < (2, 2):
|
32 |
-
warnings.warn(
|
33 |
-
f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. "
|
34 |
-
"Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).",
|
35 |
-
category=UserWarning,
|
36 |
-
stacklevel=2,
|
37 |
-
)
|
38 |
-
math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn
|
39 |
-
else:
|
40 |
-
old_gpu = True
|
41 |
-
use_flash_attn = False
|
42 |
-
math_kernel_on = True
|
43 |
-
|
44 |
-
return old_gpu, use_flash_attn, math_kernel_on
|
45 |
-
|
46 |
-
|
47 |
-
def get_connected_components(mask):
|
48 |
-
"""
|
49 |
-
Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W).
|
50 |
-
|
51 |
-
Inputs:
|
52 |
-
- mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is
|
53 |
-
background.
|
54 |
-
|
55 |
-
Outputs:
|
56 |
-
- labels: A tensor of shape (N, 1, H, W) containing the connected component labels
|
57 |
-
for foreground pixels and 0 for background pixels.
|
58 |
-
- counts: A tensor of shape (N, 1, H, W) containing the area of the connected
|
59 |
-
components for foreground pixels and 0 for background pixels.
|
60 |
-
"""
|
61 |
-
from sam2 import _C
|
62 |
-
|
63 |
-
return _C.get_connected_componnets(mask.to(torch.uint8).contiguous())
|
64 |
-
|
65 |
-
|
66 |
-
def mask_to_box(masks: torch.Tensor):
|
67 |
-
"""
|
68 |
-
compute bounding box given an input mask
|
69 |
-
|
70 |
-
Inputs:
|
71 |
-
- masks: [B, 1, H, W] boxes, dtype=torch.Tensor
|
72 |
-
|
73 |
-
Returns:
|
74 |
-
- box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor
|
75 |
-
"""
|
76 |
-
B, _, h, w = masks.shape
|
77 |
-
device = masks.device
|
78 |
-
xs = torch.arange(w, device=device, dtype=torch.int32)
|
79 |
-
ys = torch.arange(h, device=device, dtype=torch.int32)
|
80 |
-
grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy")
|
81 |
-
grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w)
|
82 |
-
grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w)
|
83 |
-
min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1)
|
84 |
-
max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1)
|
85 |
-
min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1)
|
86 |
-
max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1)
|
87 |
-
bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1)
|
88 |
-
|
89 |
-
return bbox_coords
|
90 |
-
|
91 |
-
|
92 |
-
def _load_img_as_tensor(img_path, image_size):
|
93 |
-
img_pil = Image.open(img_path)
|
94 |
-
img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size)))
|
95 |
-
if img_np.dtype == np.uint8: # np.uint8 is expected for JPEG images
|
96 |
-
img_np = img_np / 255.0
|
97 |
-
else:
|
98 |
-
raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}")
|
99 |
-
img = torch.from_numpy(img_np).permute(2, 0, 1)
|
100 |
-
video_width, video_height = img_pil.size # the original video size
|
101 |
-
return img, video_height, video_width
|
102 |
-
|
103 |
-
|
104 |
-
class AsyncVideoFrameLoader:
|
105 |
-
"""
|
106 |
-
A list of video frames to be load asynchronously without blocking session start.
|
107 |
-
"""
|
108 |
-
|
109 |
-
def __init__(self, img_paths, image_size, offload_video_to_cpu, img_mean, img_std):
|
110 |
-
self.img_paths = img_paths
|
111 |
-
self.image_size = image_size
|
112 |
-
self.offload_video_to_cpu = offload_video_to_cpu
|
113 |
-
self.img_mean = img_mean
|
114 |
-
self.img_std = img_std
|
115 |
-
# items in `self._images` will be loaded asynchronously
|
116 |
-
self.images = [None] * len(img_paths)
|
117 |
-
# catch and raise any exceptions in the async loading thread
|
118 |
-
self.exception = None
|
119 |
-
# video_height and video_width be filled when loading the first image
|
120 |
-
self.video_height = None
|
121 |
-
self.video_width = None
|
122 |
-
|
123 |
-
# load the first frame to fill video_height and video_width and also
|
124 |
-
# to cache it (since it's most likely where the user will click)
|
125 |
-
self.__getitem__(0)
|
126 |
-
|
127 |
-
# load the rest of frames asynchronously without blocking the session start
|
128 |
-
def _load_frames():
|
129 |
-
try:
|
130 |
-
for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"):
|
131 |
-
self.__getitem__(n)
|
132 |
-
except Exception as e:
|
133 |
-
self.exception = e
|
134 |
-
|
135 |
-
self.thread = Thread(target=_load_frames, daemon=True)
|
136 |
-
self.thread.start()
|
137 |
-
|
138 |
-
def __getitem__(self, index):
|
139 |
-
if self.exception is not None:
|
140 |
-
raise RuntimeError("Failure in frame loading thread") from self.exception
|
141 |
-
|
142 |
-
img = self.images[index]
|
143 |
-
if img is not None:
|
144 |
-
return img
|
145 |
-
|
146 |
-
img, video_height, video_width = _load_img_as_tensor(
|
147 |
-
self.img_paths[index], self.image_size
|
148 |
-
)
|
149 |
-
self.video_height = video_height
|
150 |
-
self.video_width = video_width
|
151 |
-
# normalize by mean and std
|
152 |
-
img -= self.img_mean
|
153 |
-
img /= self.img_std
|
154 |
-
if not self.offload_video_to_cpu:
|
155 |
-
img = img.cuda(non_blocking=True)
|
156 |
-
self.images[index] = img
|
157 |
-
return img
|
158 |
-
|
159 |
-
def __len__(self):
|
160 |
-
return len(self.images)
|
161 |
-
|
162 |
-
|
163 |
-
def load_video_frames(
|
164 |
-
video_path,
|
165 |
-
image_size,
|
166 |
-
offload_video_to_cpu,
|
167 |
-
img_mean=(0.485, 0.456, 0.406),
|
168 |
-
img_std=(0.229, 0.224, 0.225),
|
169 |
-
async_loading_frames=False,
|
170 |
-
):
|
171 |
-
"""
|
172 |
-
Load the video frames from a directory of JPEG files ("<frame_index>.jpg" format).
|
173 |
-
|
174 |
-
The frames are resized to image_size x image_size and are loaded to GPU if
|
175 |
-
`offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`.
|
176 |
-
|
177 |
-
You can load a frame asynchronously by setting `async_loading_frames` to `True`.
|
178 |
-
"""
|
179 |
-
if isinstance(video_path, str) and os.path.isdir(video_path):
|
180 |
-
jpg_folder = video_path
|
181 |
-
else:
|
182 |
-
raise NotImplementedError("Only JPEG frames are supported at this moment")
|
183 |
-
|
184 |
-
frame_names = [
|
185 |
-
p
|
186 |
-
for p in os.listdir(jpg_folder)
|
187 |
-
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
|
188 |
-
]
|
189 |
-
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
|
190 |
-
num_frames = len(frame_names)
|
191 |
-
if num_frames == 0:
|
192 |
-
raise RuntimeError(f"no images found in {jpg_folder}")
|
193 |
-
img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names]
|
194 |
-
img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
|
195 |
-
img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
|
196 |
-
|
197 |
-
if async_loading_frames:
|
198 |
-
lazy_images = AsyncVideoFrameLoader(
|
199 |
-
img_paths, image_size, offload_video_to_cpu, img_mean, img_std
|
200 |
-
)
|
201 |
-
return lazy_images, lazy_images.video_height, lazy_images.video_width
|
202 |
-
|
203 |
-
images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32)
|
204 |
-
for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")):
|
205 |
-
images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size)
|
206 |
-
if not offload_video_to_cpu:
|
207 |
-
images = images.cuda()
|
208 |
-
img_mean = img_mean.cuda()
|
209 |
-
img_std = img_std.cuda()
|
210 |
-
# normalize by mean and std
|
211 |
-
images -= img_mean
|
212 |
-
images /= img_std
|
213 |
-
return images, video_height, video_width
|
214 |
-
|
215 |
-
|
216 |
-
def fill_holes_in_mask_scores(mask, max_area):
|
217 |
-
"""
|
218 |
-
A post processor to fill small holes in mask scores with area under `max_area`.
|
219 |
-
"""
|
220 |
-
# Holes are those connected components in background with area <= self.max_area
|
221 |
-
# (background regions are those with mask scores <= 0)
|
222 |
-
assert max_area > 0, "max_area must be positive"
|
223 |
-
labels, areas = get_connected_components(mask <= 0)
|
224 |
-
is_hole = (labels > 0) & (areas <= max_area)
|
225 |
-
# We fill holes with a small positive mask score (0.1) to change them to foreground.
|
226 |
-
mask = torch.where(is_hole, 0.1, mask)
|
227 |
-
return mask
|
228 |
-
|
229 |
-
|
230 |
-
def concat_points(old_point_inputs, new_points, new_labels):
|
231 |
-
"""Add new points and labels to previous point inputs (add at the end)."""
|
232 |
-
if old_point_inputs is None:
|
233 |
-
points, labels = new_points, new_labels
|
234 |
-
else:
|
235 |
-
points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1)
|
236 |
-
labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1)
|
237 |
-
|
238 |
-
return {"point_coords": points, "point_labels": labels}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sam2/utils/transforms.py
DELETED
@@ -1,99 +0,0 @@
|
|
1 |
-
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
-
# All rights reserved.
|
3 |
-
|
4 |
-
# This source code is licensed under the license found in the
|
5 |
-
# LICENSE file in the root directory of this source tree.
|
6 |
-
|
7 |
-
import torch
|
8 |
-
import torch.nn as nn
|
9 |
-
import torch.nn.functional as F
|
10 |
-
from torchvision.transforms import Normalize, Resize, ToTensor
|
11 |
-
|
12 |
-
|
13 |
-
class SAM2Transforms(nn.Module):
|
14 |
-
def __init__(
|
15 |
-
self, resolution, mask_threshold, max_hole_area=0.0, max_sprinkle_area=0.0
|
16 |
-
):
|
17 |
-
"""
|
18 |
-
Transforms for SAM2.
|
19 |
-
"""
|
20 |
-
super().__init__()
|
21 |
-
self.resolution = resolution
|
22 |
-
self.mask_threshold = mask_threshold
|
23 |
-
self.max_hole_area = max_hole_area
|
24 |
-
self.max_sprinkle_area = max_sprinkle_area
|
25 |
-
self.mean = [0.485, 0.456, 0.406]
|
26 |
-
self.std = [0.229, 0.224, 0.225]
|
27 |
-
self.to_tensor = ToTensor()
|
28 |
-
self.transforms = torch.jit.script(
|
29 |
-
nn.Sequential(
|
30 |
-
Resize((self.resolution, self.resolution)),
|
31 |
-
Normalize(self.mean, self.std),
|
32 |
-
)
|
33 |
-
)
|
34 |
-
|
35 |
-
def __call__(self, x):
|
36 |
-
x = self.to_tensor(x)
|
37 |
-
return self.transforms(x)
|
38 |
-
|
39 |
-
def forward_batch(self, img_list):
|
40 |
-
img_batch = [self.transforms(self.to_tensor(img)) for img in img_list]
|
41 |
-
img_batch = torch.stack(img_batch, dim=0)
|
42 |
-
return img_batch
|
43 |
-
|
44 |
-
def transform_coords(
|
45 |
-
self, coords: torch.Tensor, normalize=False, orig_hw=None
|
46 |
-
) -> torch.Tensor:
|
47 |
-
"""
|
48 |
-
Expects a torch tensor with length 2 in the last dimension. The coordinates can be in absolute image or normalized coordinates,
|
49 |
-
If the coords are in absolute image coordinates, normalize should be set to True and original image size is required.
|
50 |
-
|
51 |
-
Returns
|
52 |
-
Un-normalized coordinates in the range of [0, 1] which is expected by the SAM2 model.
|
53 |
-
"""
|
54 |
-
if normalize:
|
55 |
-
assert orig_hw is not None
|
56 |
-
h, w = orig_hw
|
57 |
-
coords = coords.clone()
|
58 |
-
coords[..., 0] = coords[..., 0] / w
|
59 |
-
coords[..., 1] = coords[..., 1] / h
|
60 |
-
|
61 |
-
coords = coords * self.resolution # unnormalize coords
|
62 |
-
return coords
|
63 |
-
|
64 |
-
def transform_boxes(
|
65 |
-
self, boxes: torch.Tensor, normalize=False, orig_hw=None
|
66 |
-
) -> torch.Tensor:
|
67 |
-
"""
|
68 |
-
Expects a tensor of shape Bx4. The coordinates can be in absolute image or normalized coordinates,
|
69 |
-
if the coords are in absolute image coordinates, normalize should be set to True and original image size is required.
|
70 |
-
"""
|
71 |
-
boxes = self.transform_coords(boxes.reshape(-1, 2, 2), normalize, orig_hw)
|
72 |
-
return boxes
|
73 |
-
|
74 |
-
def postprocess_masks(self, masks: torch.Tensor, orig_hw) -> torch.Tensor:
|
75 |
-
"""
|
76 |
-
Perform PostProcessing on output masks.
|
77 |
-
"""
|
78 |
-
from sam2.utils.misc import get_connected_components
|
79 |
-
|
80 |
-
masks = masks.float()
|
81 |
-
if self.max_hole_area > 0:
|
82 |
-
# Holes are those connected components in background with area <= self.fill_hole_area
|
83 |
-
# (background regions are those with mask scores <= self.mask_threshold)
|
84 |
-
mask_flat = masks.flatten(0, 1).unsqueeze(1) # flatten as 1-channel image
|
85 |
-
labels, areas = get_connected_components(mask_flat <= self.mask_threshold)
|
86 |
-
is_hole = (labels > 0) & (areas <= self.max_hole_area)
|
87 |
-
is_hole = is_hole.reshape_as(masks)
|
88 |
-
# We fill holes with a small positive mask score (10.0) to change them to foreground.
|
89 |
-
masks = torch.where(is_hole, self.mask_threshold + 10.0, masks)
|
90 |
-
|
91 |
-
if self.max_sprinkle_area > 0:
|
92 |
-
labels, areas = get_connected_components(mask_flat > self.mask_threshold)
|
93 |
-
is_hole = (labels > 0) & (areas <= self.max_sprinkle_area)
|
94 |
-
is_hole = is_hole.reshape_as(masks)
|
95 |
-
# We fill holes with negative mask score (-10.0) to change them to background.
|
96 |
-
masks = torch.where(is_hole, self.mask_threshold - 10.0, masks)
|
97 |
-
|
98 |
-
masks = F.interpolate(masks, orig_hw, mode="bilinear", align_corners=False)
|
99 |
-
return masks
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|