Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
#5
by
LPX55
- opened
app.py
CHANGED
@@ -17,44 +17,51 @@ MODELS = {
|
|
17 |
"Juggernaut-XL-V9-GE-RDPhoto2": "AiWise/Juggernaut-XL-V9-GE-RDPhoto2-Lightning_4S",
|
18 |
"SatPony-Lightning": "John6666/satpony-lightning-v2-sdxl"
|
19 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
)
|
25 |
-
|
26 |
-
controlnet_model = ControlNetModel_Union.from_config(config)
|
27 |
-
model_file = hf_hub_download(
|
28 |
-
"xinsir/controlnet-union-sdxl-1.0",
|
29 |
-
filename="diffusion_pytorch_model_promax.safetensors",
|
30 |
-
)
|
31 |
-
state_dict = load_state_dict(model_file)
|
32 |
-
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
|
33 |
-
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
|
34 |
-
)
|
35 |
-
model.to(device="cuda", dtype=torch.float16)
|
36 |
-
vae = AutoencoderKL.from_pretrained(
|
37 |
-
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
38 |
-
).to("cuda")
|
39 |
-
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
40 |
-
"SG161222/RealVisXL_V5.0_Lightning",
|
41 |
-
torch_dtype=torch.float16,
|
42 |
-
vae=vae,
|
43 |
-
controlnet=model,
|
44 |
-
variant="fp16",
|
45 |
-
)
|
46 |
-
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
47 |
-
"GraydientPlatformAPI/lustify-lightning",
|
48 |
-
torch_dtype=torch.float16,
|
49 |
-
vae=vae,
|
50 |
-
controlnet=model,
|
51 |
-
)
|
52 |
-
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
53 |
-
pipe.to("cuda")
|
54 |
|
55 |
@spaces.GPU(duration=12)
|
56 |
def fill_image(prompt, image, model_selection, paste_back):
|
57 |
print(f"Received image: {image}")
|
|
|
|
|
58 |
if image is None:
|
59 |
yield None, None
|
60 |
return
|
@@ -191,13 +198,7 @@ def preview_image_and_mask(image, width, height, overlap_percentage, resize_opti
|
|
191 |
@spaces.GPU(duration=12)
|
192 |
def inpaint(prompt, image, inpaint_model, paste_back):
|
193 |
global pipe
|
194 |
-
|
195 |
-
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
196 |
-
MODELS[model_name],
|
197 |
-
torch_dtype=torch.float16,
|
198 |
-
vae=vae,
|
199 |
-
controlnet=model,
|
200 |
-
).to("cuda")
|
201 |
mask = Image.fromarray(image["mask"]).convert("L")
|
202 |
image = Image.fromarray(image["image"])
|
203 |
inpaint_final_prompt = f"score_9, score_8_up, score_7_up, {prompt}"
|
@@ -235,6 +236,8 @@ def outpaint(image, width, height, overlap_percentage, num_inference_steps, resi
|
|
235 |
|
236 |
@spaces.GPU(duration=12)
|
237 |
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
|
|
|
|
238 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
239 |
if not can_expand(background.width, background.height, width, height, alignment):
|
240 |
alignment = "Middle"
|
@@ -259,7 +262,7 @@ def infer(image, width, height, overlap_percentage, num_inference_steps, resize_
|
|
259 |
image = image.convert("RGBA")
|
260 |
cnet_image.paste(image, (0, 0), mask)
|
261 |
yield background, cnet_image
|
262 |
-
|
263 |
def use_output_as_input(output_image):
|
264 |
return gr.update(value=output_image[1])
|
265 |
|
@@ -360,6 +363,8 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
360 |
label="Generated Image",
|
361 |
)
|
362 |
use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
|
|
|
|
363 |
use_as_input_button.click(
|
364 |
fn=use_output_as_input, inputs=[result], outputs=[input_image]
|
365 |
)
|
@@ -371,10 +376,24 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
371 |
fn=lambda: gr.update(visible=False),
|
372 |
inputs=None,
|
373 |
outputs=use_as_input_button,
|
|
|
|
|
|
|
|
|
374 |
).then(
|
375 |
fn=fill_image,
|
376 |
inputs=[prompt, input_image, model_selection, paste_back],
|
377 |
outputs=[result],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
).then(
|
379 |
fn=lambda: gr.update(visible=True),
|
380 |
inputs=None,
|
@@ -388,10 +407,24 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
388 |
fn=lambda: gr.update(visible=False),
|
389 |
inputs=None,
|
390 |
outputs=use_as_input_button,
|
|
|
|
|
|
|
|
|
391 |
).then(
|
392 |
fn=fill_image,
|
393 |
inputs=[prompt, input_image, model_selection, paste_back],
|
394 |
outputs=[result],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
).then(
|
396 |
fn=lambda: gr.update(visible=True),
|
397 |
inputs=None,
|
@@ -487,6 +520,8 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
487 |
use_as_input_button_outpaint = gr.Button("Use as Input Image", visible=False)
|
488 |
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
489 |
preview_image = gr.Image(label="Preview")
|
|
|
|
|
490 |
|
491 |
target_ratio.change(
|
492 |
fn=preload_presets,
|
@@ -525,16 +560,30 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
525 |
fn=clear_result,
|
526 |
inputs=None,
|
527 |
outputs=result_outpaint,
|
|
|
|
|
|
|
|
|
528 |
).then(
|
529 |
fn=infer,
|
530 |
inputs=[input_image_outpaint, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
531 |
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
532 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
533 |
outputs=[result_outpaint],
|
|
|
|
|
|
|
|
|
|
|
534 |
).then(
|
535 |
fn=lambda x, history: update_history(x[1], history),
|
536 |
inputs=[result_outpaint, history_gallery],
|
537 |
outputs=history_gallery,
|
|
|
|
|
|
|
|
|
|
|
538 |
).then(
|
539 |
fn=lambda: gr.update(visible=True),
|
540 |
inputs=None,
|
@@ -544,16 +593,30 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
544 |
fn=clear_result,
|
545 |
inputs=None,
|
546 |
outputs=result_outpaint,
|
|
|
|
|
|
|
|
|
547 |
).then(
|
548 |
fn=infer,
|
549 |
inputs=[input_image_outpaint, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
550 |
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
551 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
552 |
outputs=[result_outpaint],
|
|
|
|
|
|
|
|
|
|
|
553 |
).then(
|
554 |
fn=lambda x, history: update_history(x[1], history),
|
555 |
inputs=[result_outpaint, history_gallery],
|
556 |
outputs=history_gallery,
|
|
|
|
|
|
|
|
|
|
|
557 |
).then(
|
558 |
fn=lambda: gr.update(visible=True),
|
559 |
inputs=None,
|
@@ -566,5 +629,4 @@ with gr.Blocks(css=css, fill_height=True) as demo:
|
|
566 |
outputs=[preview_image],
|
567 |
queue=False
|
568 |
)
|
569 |
-
|
570 |
demo.launch(show_error=True)
|
|
|
17 |
"Juggernaut-XL-V9-GE-RDPhoto2": "AiWise/Juggernaut-XL-V9-GE-RDPhoto2-Lightning_4S",
|
18 |
"SatPony-Lightning": "John6666/satpony-lightning-v2-sdxl"
|
19 |
}
|
20 |
+
def init_pipeline(model_name):
|
21 |
+
config_file = hf_hub_download(
|
22 |
+
"xinsir/controlnet-union-sdxl-1.0",
|
23 |
+
filename="config_promax.json",
|
24 |
+
)
|
25 |
+
config = ControlNetModel_Union.load_config(config_file)
|
26 |
+
controlnet_model = ControlNetModel_Union.from_config(config)
|
27 |
+
model_file = hf_hub_download(
|
28 |
+
"xinsir/controlnet-union-sdxl-1.0",
|
29 |
+
filename="diffusion_pytorch_model_promax.safetensors",
|
30 |
+
)
|
31 |
+
state_dict = load_state_dict(model_file)
|
32 |
+
model, _,_, _,_ = ControlNetModel_Union._load_pretrained_model(
|
33 |
+
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
|
34 |
+
)
|
35 |
+
model.to(device="cuda", dtype=torch.float16)
|
36 |
+
vae = AutoencoderKL.from_pretrained(
|
37 |
+
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
38 |
+
).to("cuda")
|
39 |
+
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
40 |
+
MODELS[model_name],
|
41 |
+
torch_dtype=torch.float16,
|
42 |
+
vae=vae,
|
43 |
+
controlnet=model,
|
44 |
+
variant="fp16",
|
45 |
+
)
|
46 |
+
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
47 |
+
pipe.to("cuda")
|
48 |
+
return pipe
|
49 |
+
|
50 |
+
# Initialize with the default model
|
51 |
+
default_model_name = "RealVisXL V5.0 Lightning"
|
52 |
+
pipe = init_pipeline(default_model_name)
|
53 |
|
54 |
+
def update_pipeline(model_selection):
|
55 |
+
global pipe
|
56 |
+
if pipe.config.model_name != MODELS[model_selection]:
|
57 |
+
pipe = init_pipeline(model_selection)
|
58 |
+
return pipe
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
@spaces.GPU(duration=12)
|
61 |
def fill_image(prompt, image, model_selection, paste_back):
|
62 |
print(f"Received image: {image}")
|
63 |
+
global pipe
|
64 |
+
update_pipeline(model_selection)
|
65 |
if image is None:
|
66 |
yield None, None
|
67 |
return
|
|
|
198 |
@spaces.GPU(duration=12)
|
199 |
def inpaint(prompt, image, inpaint_model, paste_back):
|
200 |
global pipe
|
201 |
+
update_pipeline(inpaint_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
mask = Image.fromarray(image["mask"]).convert("L")
|
203 |
image = Image.fromarray(image["image"])
|
204 |
inpaint_final_prompt = f"score_9, score_8_up, score_7_up, {prompt}"
|
|
|
236 |
|
237 |
@spaces.GPU(duration=12)
|
238 |
def infer(image, width, height, overlap_percentage, num_inference_steps, resize_option, custom_resize_percentage, prompt_input, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom):
|
239 |
+
global pipe
|
240 |
+
update_pipeline(model_selection) # Added this line
|
241 |
background, mask = prepare_image_and_mask(image, width, height, overlap_percentage, resize_option, custom_resize_percentage, alignment, overlap_left, overlap_right, overlap_top, overlap_bottom)
|
242 |
if not can_expand(background.width, background.height, width, height, alignment):
|
243 |
alignment = "Middle"
|
|
|
262 |
image = image.convert("RGBA")
|
263 |
cnet_image.paste(image, (0, 0), mask)
|
264 |
yield background, cnet_image
|
265 |
+
|
266 |
def use_output_as_input(output_image):
|
267 |
return gr.update(value=output_image[1])
|
268 |
|
|
|
363 |
label="Generated Image",
|
364 |
)
|
365 |
use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
366 |
+
loading_message = gr.Label(label="Status", value="", visible=False) # Added loading message label
|
367 |
+
|
368 |
use_as_input_button.click(
|
369 |
fn=use_output_as_input, inputs=[result], outputs=[input_image]
|
370 |
)
|
|
|
376 |
fn=lambda: gr.update(visible=False),
|
377 |
inputs=None,
|
378 |
outputs=use_as_input_button,
|
379 |
+
).then(
|
380 |
+
fn=lambda: gr.update(value="Loading Model...", visible=True), # Show loading message
|
381 |
+
inputs=None,
|
382 |
+
outputs=[loading_message, use_as_input_button]
|
383 |
).then(
|
384 |
fn=fill_image,
|
385 |
inputs=[prompt, input_image, model_selection, paste_back],
|
386 |
outputs=[result],
|
387 |
+
).then(
|
388 |
+
fn=lambda: gr.update(value="Model Loaded", visible=True), # Show loaded message
|
389 |
+
inputs=None,
|
390 |
+
outputs=[loading_message],
|
391 |
+
queue=False
|
392 |
+
).then(
|
393 |
+
fn=lambda: gr.update(value="", visible=False), # Hide loading message
|
394 |
+
inputs=None,
|
395 |
+
outputs=[loading_message],
|
396 |
+
queue=False
|
397 |
).then(
|
398 |
fn=lambda: gr.update(visible=True),
|
399 |
inputs=None,
|
|
|
407 |
fn=lambda: gr.update(visible=False),
|
408 |
inputs=None,
|
409 |
outputs=use_as_input_button,
|
410 |
+
).then(
|
411 |
+
fn=lambda: gr.update(value="Loading Model...", visible=True), # Show loading message
|
412 |
+
inputs=None,
|
413 |
+
outputs=[loading_message, use_as_input_button]
|
414 |
).then(
|
415 |
fn=fill_image,
|
416 |
inputs=[prompt, input_image, model_selection, paste_back],
|
417 |
outputs=[result],
|
418 |
+
).then(
|
419 |
+
fn=lambda: gr.update(value="Model Loaded", visible=True), # Show loaded message
|
420 |
+
inputs=None,
|
421 |
+
outputs=[loading_message],
|
422 |
+
queue=False
|
423 |
+
).then(
|
424 |
+
fn=lambda: gr.update(value="", visible=False), # Hide loading message
|
425 |
+
inputs=None,
|
426 |
+
outputs=[loading_message],
|
427 |
+
queue=False
|
428 |
).then(
|
429 |
fn=lambda: gr.update(visible=True),
|
430 |
inputs=None,
|
|
|
520 |
use_as_input_button_outpaint = gr.Button("Use as Input Image", visible=False)
|
521 |
history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", interactive=False)
|
522 |
preview_image = gr.Image(label="Preview")
|
523 |
+
loading_message_outpaint = gr.Label(label="Status", value="", visible=False) # Added loading message label
|
524 |
+
|
525 |
|
526 |
target_ratio.change(
|
527 |
fn=preload_presets,
|
|
|
560 |
fn=clear_result,
|
561 |
inputs=None,
|
562 |
outputs=result_outpaint,
|
563 |
+
).then(
|
564 |
+
fn=lambda: gr.update(value="Loading Model...", visible=True), # Show loading message
|
565 |
+
inputs=None,
|
566 |
+
outputs=[loading_message_outpaint, use_as_input_button_outpaint]
|
567 |
).then(
|
568 |
fn=infer,
|
569 |
inputs=[input_image_outpaint, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
570 |
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
571 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
572 |
outputs=[result_outpaint],
|
573 |
+
).then(
|
574 |
+
fn=lambda: gr.update(value="Model Loaded", visible=True), # Show loaded message
|
575 |
+
inputs=None,
|
576 |
+
outputs=[loading_message_outpaint],
|
577 |
+
queue=False
|
578 |
).then(
|
579 |
fn=lambda x, history: update_history(x[1], history),
|
580 |
inputs=[result_outpaint, history_gallery],
|
581 |
outputs=history_gallery,
|
582 |
+
).then(
|
583 |
+
fn=lambda: gr.update(value="", visible=False), # Hide loading message
|
584 |
+
inputs=None,
|
585 |
+
outputs=[loading_message_outpaint],
|
586 |
+
queue=False
|
587 |
).then(
|
588 |
fn=lambda: gr.update(visible=True),
|
589 |
inputs=None,
|
|
|
593 |
fn=clear_result,
|
594 |
inputs=None,
|
595 |
outputs=result_outpaint,
|
596 |
+
).then(
|
597 |
+
fn=lambda: gr.update(value="Loading Model...", visible=True), # Show loading message
|
598 |
+
inputs=None,
|
599 |
+
outputs=[loading_message_outpaint, use_as_input_button_outpaint]
|
600 |
).then(
|
601 |
fn=infer,
|
602 |
inputs=[input_image_outpaint, width_slider, height_slider, overlap_percentage, num_inference_steps,
|
603 |
resize_option, custom_resize_percentage, prompt_input, alignment_dropdown,
|
604 |
overlap_left, overlap_right, overlap_top, overlap_bottom],
|
605 |
outputs=[result_outpaint],
|
606 |
+
).then(
|
607 |
+
fn=lambda: gr.update(value="Model Loaded", visible=True), # Show loaded message
|
608 |
+
inputs=None,
|
609 |
+
outputs=[loading_message_outpaint],
|
610 |
+
queue=False
|
611 |
).then(
|
612 |
fn=lambda x, history: update_history(x[1], history),
|
613 |
inputs=[result_outpaint, history_gallery],
|
614 |
outputs=history_gallery,
|
615 |
+
).then(
|
616 |
+
fn=lambda: gr.update(value="", visible=False), # Hide loading message
|
617 |
+
inputs=None,
|
618 |
+
outputs=[loading_message_outpaint],
|
619 |
+
queue=False
|
620 |
).then(
|
621 |
fn=lambda: gr.update(visible=True),
|
622 |
inputs=None,
|
|
|
629 |
outputs=[preview_image],
|
630 |
queue=False
|
631 |
)
|
|
|
632 |
demo.launch(show_error=True)
|