|
import os |
|
import gradio as gr |
|
import requests |
|
import inspect |
|
import pandas as pd |
|
from smolagents import OpenAIServerModel, DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool |
|
from smolagents.tools import Tool |
|
import time |
|
import openai |
|
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type |
|
import random |
|
import re |
|
from collections import Counter |
|
|
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
|
|
|
|
|
|
class TextSummarizationTool(Tool): |
|
"""Summarizes a long text into a concise version by extracting leading sentences.""" |
|
|
|
name = "text_summarization" |
|
description = "Summarizes a long input text into a short paragraph." |
|
|
|
inputs = { |
|
"text": { |
|
"type": "string", |
|
"description": "The long text that needs to be summarized.", |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def forward(self, text: str) -> str: |
|
try: |
|
sentences = text.split('. ') |
|
if len(sentences) <= 3: |
|
return text |
|
return '. '.join(sentences[:3]) + '.' |
|
except Exception as e: |
|
return f"Error summarizing text: {e}" |
|
|
|
class KeywordExtractorTool(Tool): |
|
"""Extracts top keywords from a given block of text based on frequency.""" |
|
|
|
name = "keyword_extractor" |
|
description = "Extracts the most frequent keywords from the provided text." |
|
|
|
inputs = { |
|
"text": { |
|
"type": "string", |
|
"description": "The text to analyze for keywords.", |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def forward(self, text: str) -> str: |
|
try: |
|
words = re.findall(r'\b\w+\b', text.lower()) |
|
stop_words = {'the', 'and', 'is', 'in', 'it', 'of', 'to', 'a'} |
|
filtered_words = [w for w in words if w not in stop_words] |
|
word_counts = Counter(filtered_words) |
|
keywords = ', '.join(word for word, _ in word_counts.most_common(5)) |
|
return keywords |
|
except Exception as e: |
|
return f"Error extracting keywords: {e}" |
|
|
|
class TextTranslationTool(Tool): |
|
"""Translates simple words from source to target language using a dictionary lookup.""" |
|
|
|
name = "text_translation" |
|
description = "Translates simple words from English to Spanish using a fixed dictionary." |
|
|
|
inputs = { |
|
"text": { |
|
"type": "string", |
|
"description": "The text to translate word-by-word.", |
|
}, |
|
"source_lang": { |
|
"type": "string", |
|
"description": "Source language code (e.g., 'en').", |
|
}, |
|
"target_lang": { |
|
"type": "string", |
|
"description": "Target language code (e.g., 'es').", |
|
} |
|
} |
|
output_type = "string" |
|
|
|
def __init__(self): |
|
self.translation_dict = { |
|
'hello': 'hola', |
|
'world': 'mundo', |
|
'goodbye': 'adiós', |
|
'thank': 'gracias', |
|
'you': 'tú' |
|
} |
|
|
|
def forward(self, text: str, source_lang: str, target_lang: str) -> str: |
|
try: |
|
words = text.split() |
|
translated_words = [self.translation_dict.get(word.lower(), word) for word in words] |
|
return ' '.join(translated_words) |
|
except Exception as e: |
|
return f"Error translating text: {e}" |
|
|
|
|
|
def safe_agent_call(agent, question, retries=5, wait_time=20): |
|
""" |
|
Helper function to safely call the agent with retry on rate limit errors (HTTP 429). |
|
""" |
|
for attempt in range(retries): |
|
try: |
|
return agent(question) |
|
except Exception as e: |
|
error_text = str(e).lower() |
|
if "rate limit" in error_text or "429" in error_text: |
|
print(f"[Retry] Rate limit hit. Waiting {wait_time} seconds before retrying... (Attempt {attempt + 1}/{retries})") |
|
time.sleep(wait_time) |
|
else: |
|
print(f"[Error] Non-rate-limit error encountered: {e}") |
|
raise e |
|
raise Exception(f"Failed after {retries} retries due to repeated rate limit errors.") |
|
|
|
|
|
|
|
class BasicAgent: |
|
def __init__(self): |
|
self.agent = CodeAgent( |
|
model=OpenAIServerModel(model_id="gpt-4.1-mini"), |
|
tools=[ |
|
DuckDuckGoSearchTool(), |
|
WikipediaSearchTool(), |
|
KeywordExtractorTool(), |
|
TextSummarizationTool(), |
|
TextTranslationTool() |
|
], |
|
add_base_tools=True, |
|
) |
|
print("✅ BasicAgent initialized.") |
|
|
|
def __call__(self, question: str) -> str: |
|
""" |
|
Calls the agent's run method to generate a response to the question. |
|
""" |
|
print(f"Agent received question (first 50 chars): {question[:50]}...") |
|
fixed_answer = self.agent.run(question) |
|
print(f"Agent returning answer: {fixed_answer}") |
|
return fixed_answer |
|
|
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
""" |
|
Fetches all questions, runs BasicAgent on them with retry logic on rate limit, |
|
submits all answers, and displays the results. |
|
""" |
|
|
|
|
|
space_id = os.getenv("SPACE_ID") |
|
if profile: |
|
username = f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = BasicAgent() |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" |
|
print(f"Agent Code Repository: {agent_code}") |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except Exception as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running agent on {len(questions_data)} questions...") |
|
for idx, item in enumerate(questions_data, start=1): |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
try: |
|
submitted_answer = agent(question_text) |
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) |
|
except Exception as e: |
|
print(f"Error running agent on task {task_id}: {e}") |
|
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) |
|
|
|
print(f"[{idx}/{len(questions_data)}] Waiting 60 seconds before next request...") |
|
time.sleep(60) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = { |
|
"username": username.strip(), |
|
"agent_code": agent_code, |
|
"answers": answers_payload, |
|
} |
|
print(f"Submitting {len(answers_payload)} answers...") |
|
|
|
|
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"✅ Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except Exception as e: |
|
print(f"Submission error: {e}") |
|
results_df = pd.DataFrame(results_log) |
|
return f"Submission Failed: {e}", results_df |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Basic Agent Evaluation Runner") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
|
|
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... |
|
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. |
|
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
--- |
|
**Disclaimers:** |
|
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). |
|
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
|
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " App Starting " + "-"*30) |
|
|
|
space_host_startup = os.getenv("SPACE_HOST") |
|
space_id_startup = os.getenv("SPACE_ID") |
|
|
|
if space_host_startup: |
|
print(f"✅ SPACE_HOST found: {space_host_startup}") |
|
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") |
|
else: |
|
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") |
|
|
|
if space_id_startup: |
|
print(f"✅ SPACE_ID found: {space_id_startup}") |
|
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") |
|
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") |
|
else: |
|
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") |
|
|
|
print("-"*(60 + len(" App Starting ")) + "\n") |
|
|
|
print("Launching Gradio Interface for Basic Agent Evaluation...") |
|
demo.launch(debug=True, share=False) |