File size: 11,544 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
93a01a7
 
89ba998
7dec185
 
83a9fd8
1ac3770
 
10e9b7d
d59f015
e80aab9
3db6293
e80aab9
31243f4
d59f015
1ac3770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce24e12
83a9fd8
89ba998
83a9fd8
31243f4
89ba998
 
 
 
 
 
 
 
 
 
 
 
 
83a9fd8
ce24e12
 
 
 
f28639d
ce24e12
 
 
1ac3770
 
 
ce24e12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89ba998
31243f4
ce24e12
89ba998
 
 
ce24e12
89ba998
7e4a06b
89ba998
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
 
e80aab9
ce24e12
31243f4
 
 
3c4371f
31243f4
89ba998
36ed51a
ce24e12
3c4371f
ce24e12
31243f4
eccf8e4
31243f4
7d65c66
31243f4
 
89ba998
 
31243f4
ce24e12
31243f4
 
e80aab9
ce24e12
7d65c66
 
3c4371f
20a2dd4
31243f4
 
 
 
 
 
20a2dd4
83a9fd8
 
31243f4
89ba998
83a9fd8
20a2dd4
 
 
31243f4
 
3c4371f
31243f4
 
ce24e12
89ba998
 
 
ce24e12
89ba998
ce24e12
e80aab9
ce24e12
e80aab9
7d65c66
e80aab9
 
31243f4
ce24e12
e80aab9
3c4371f
 
 
e80aab9
31243f4
 
7d65c66
ce24e12
31243f4
ce24e12
e80aab9
 
 
31243f4
0ee0419
e514fd7
 
 
81917a3
e514fd7
 
 
 
 
 
 
 
e80aab9
 
7e4a06b
e80aab9
31243f4
e80aab9
9088b99
7d65c66
 
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
7d65c66
3c4371f
7d65c66
 
3c4371f
 
7d65c66
3c4371f
7d65c66
 
 
 
 
 
 
 
 
3c4371f
 
31243f4
3c4371f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import OpenAIServerModel, DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool
from smolagents.tools import Tool
import time
import openai
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
import random
import re
from collections import Counter

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------


class TextSummarizationTool(Tool):
    """Summarizes a long text into a concise version by extracting leading sentences."""

    name = "text_summarization"
    description = "Summarizes a long input text into a short paragraph."

    inputs = {
        "text": {
            "type": "string",
            "description": "The long text that needs to be summarized.",
        }
    }
    output_type = "string"

    def forward(self, text: str) -> str:
        try:
            sentences = text.split('. ')
            if len(sentences) <= 3:
                return text
            return '. '.join(sentences[:3]) + '.'
        except Exception as e:
            return f"Error summarizing text: {e}"

class KeywordExtractorTool(Tool):
    """Extracts top keywords from a given block of text based on frequency."""

    name = "keyword_extractor"
    description = "Extracts the most frequent keywords from the provided text."

    inputs = {
        "text": {
            "type": "string",
            "description": "The text to analyze for keywords.",
        }
    }
    output_type = "string"

    def forward(self, text: str) -> str:
        try:
            words = re.findall(r'\b\w+\b', text.lower())
            stop_words = {'the', 'and', 'is', 'in', 'it', 'of', 'to', 'a'}
            filtered_words = [w for w in words if w not in stop_words]
            word_counts = Counter(filtered_words)
            keywords = ', '.join(word for word, _ in word_counts.most_common(5))
            return keywords
        except Exception as e:
            return f"Error extracting keywords: {e}"

class TextTranslationTool(Tool):
    """Translates simple words from source to target language using a dictionary lookup."""

    name = "text_translation"
    description = "Translates simple words from English to Spanish using a fixed dictionary."

    inputs = {
        "text": {
            "type": "string",
            "description": "The text to translate word-by-word.",
        },
        "source_lang": {
            "type": "string",
            "description": "Source language code (e.g., 'en').",
        },
        "target_lang": {
            "type": "string",
            "description": "Target language code (e.g., 'es').",
        }
    }
    output_type = "string"

    def __init__(self):
        self.translation_dict = {
            'hello': 'hola',
            'world': 'mundo',
            'goodbye': 'adiós',
            'thank': 'gracias',
            'you': 'tú'
        }

    def forward(self, text: str, source_lang: str, target_lang: str) -> str:
        try:
            words = text.split()
            translated_words = [self.translation_dict.get(word.lower(), word) for word in words]
            return ' '.join(translated_words)
        except Exception as e:
            return f"Error translating text: {e}"

# --- Retry Helper for Agent Call ---
def safe_agent_call(agent, question, retries=5, wait_time=20):
    """
    Helper function to safely call the agent with retry on rate limit errors (HTTP 429).
    """
    for attempt in range(retries):
        try:
            return agent(question)
        except Exception as e:
            error_text = str(e).lower()
            if "rate limit" in error_text or "429" in error_text:
                print(f"[Retry] Rate limit hit. Waiting {wait_time} seconds before retrying... (Attempt {attempt + 1}/{retries})")
                time.sleep(wait_time)
            else:
                print(f"[Error] Non-rate-limit error encountered: {e}")
                raise e
    raise Exception(f"Failed after {retries} retries due to repeated rate limit errors.")


# --- Basic Agent Definition ---
class BasicAgent:
    def __init__(self):
        self.agent = CodeAgent(
            model=OpenAIServerModel(model_id="gpt-4.1-mini"),
            tools=[
                DuckDuckGoSearchTool(),
                WikipediaSearchTool(),
                KeywordExtractorTool(),
                TextSummarizationTool(),
                TextTranslationTool()
            ],
            add_base_tools=True,
        )
        print("✅ BasicAgent initialized.")

    def __call__(self, question: str) -> str:
        """
        Calls the agent's run method to generate a response to the question.
        """
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        fixed_answer = self.agent.run(question)
        print(f"Agent returning answer: {fixed_answer}")
        return fixed_answer

# --- Main Logic for Fetching Questions, Running Agent, Submitting Answers ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs BasicAgent on them with retry logic on rate limit,
    submits all answers, and displays the results.
    """

    # Determine HF Space runtime info
    space_id = os.getenv("SPACE_ID")
    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # Instantiate Agent
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(f"Agent Code Repository: {agent_code}")

    # Fetch Questions
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except Exception as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None

    # Run Agent on Questions
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for idx, item in enumerate(questions_data, start=1):
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue
        try:
            submitted_answer = agent(question_text)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
    
        print(f"[{idx}/{len(questions_data)}] Waiting 60 seconds before next request...")
        time.sleep(60)

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # Prepare Submission
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload,
    }
    print(f"Submitting {len(answers_payload)} answers...")

    # Submit Answers
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"✅ Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except Exception as e:
        print(f"Submission error: {e}")
        results_df = pd.DataFrame(results_log)
        return f"Submission Failed: {e}", results_df

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1.  Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
        2.  Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        3.  Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Disclaimers:**
        Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
        This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Basic Agent Evaluation...")
    demo.launch(debug=True, share=False)