File size: 11,544 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f 93a01a7 89ba998 7dec185 83a9fd8 1ac3770 10e9b7d d59f015 e80aab9 3db6293 e80aab9 31243f4 d59f015 1ac3770 ce24e12 83a9fd8 89ba998 83a9fd8 31243f4 89ba998 83a9fd8 ce24e12 f28639d ce24e12 1ac3770 ce24e12 89ba998 31243f4 ce24e12 89ba998 ce24e12 89ba998 7e4a06b 89ba998 3c4371f 7e4a06b 3c4371f 7d65c66 3c4371f 7e4a06b 31243f4 e80aab9 ce24e12 31243f4 3c4371f 31243f4 89ba998 36ed51a ce24e12 3c4371f ce24e12 31243f4 eccf8e4 31243f4 7d65c66 31243f4 89ba998 31243f4 ce24e12 31243f4 e80aab9 ce24e12 7d65c66 3c4371f 20a2dd4 31243f4 20a2dd4 83a9fd8 31243f4 89ba998 83a9fd8 20a2dd4 31243f4 3c4371f 31243f4 ce24e12 89ba998 ce24e12 89ba998 ce24e12 e80aab9 ce24e12 e80aab9 7d65c66 e80aab9 31243f4 ce24e12 e80aab9 3c4371f e80aab9 31243f4 7d65c66 ce24e12 31243f4 ce24e12 e80aab9 31243f4 0ee0419 e514fd7 81917a3 e514fd7 e80aab9 7e4a06b e80aab9 31243f4 e80aab9 9088b99 7d65c66 e80aab9 31243f4 e80aab9 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 7d65c66 3c4371f 31243f4 3c4371f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import OpenAIServerModel, DuckDuckGoSearchTool, CodeAgent, WikipediaSearchTool
from smolagents.tools import Tool
import time
import openai
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
import random
import re
from collections import Counter
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
class TextSummarizationTool(Tool):
"""Summarizes a long text into a concise version by extracting leading sentences."""
name = "text_summarization"
description = "Summarizes a long input text into a short paragraph."
inputs = {
"text": {
"type": "string",
"description": "The long text that needs to be summarized.",
}
}
output_type = "string"
def forward(self, text: str) -> str:
try:
sentences = text.split('. ')
if len(sentences) <= 3:
return text
return '. '.join(sentences[:3]) + '.'
except Exception as e:
return f"Error summarizing text: {e}"
class KeywordExtractorTool(Tool):
"""Extracts top keywords from a given block of text based on frequency."""
name = "keyword_extractor"
description = "Extracts the most frequent keywords from the provided text."
inputs = {
"text": {
"type": "string",
"description": "The text to analyze for keywords.",
}
}
output_type = "string"
def forward(self, text: str) -> str:
try:
words = re.findall(r'\b\w+\b', text.lower())
stop_words = {'the', 'and', 'is', 'in', 'it', 'of', 'to', 'a'}
filtered_words = [w for w in words if w not in stop_words]
word_counts = Counter(filtered_words)
keywords = ', '.join(word for word, _ in word_counts.most_common(5))
return keywords
except Exception as e:
return f"Error extracting keywords: {e}"
class TextTranslationTool(Tool):
"""Translates simple words from source to target language using a dictionary lookup."""
name = "text_translation"
description = "Translates simple words from English to Spanish using a fixed dictionary."
inputs = {
"text": {
"type": "string",
"description": "The text to translate word-by-word.",
},
"source_lang": {
"type": "string",
"description": "Source language code (e.g., 'en').",
},
"target_lang": {
"type": "string",
"description": "Target language code (e.g., 'es').",
}
}
output_type = "string"
def __init__(self):
self.translation_dict = {
'hello': 'hola',
'world': 'mundo',
'goodbye': 'adiós',
'thank': 'gracias',
'you': 'tú'
}
def forward(self, text: str, source_lang: str, target_lang: str) -> str:
try:
words = text.split()
translated_words = [self.translation_dict.get(word.lower(), word) for word in words]
return ' '.join(translated_words)
except Exception as e:
return f"Error translating text: {e}"
# --- Retry Helper for Agent Call ---
def safe_agent_call(agent, question, retries=5, wait_time=20):
"""
Helper function to safely call the agent with retry on rate limit errors (HTTP 429).
"""
for attempt in range(retries):
try:
return agent(question)
except Exception as e:
error_text = str(e).lower()
if "rate limit" in error_text or "429" in error_text:
print(f"[Retry] Rate limit hit. Waiting {wait_time} seconds before retrying... (Attempt {attempt + 1}/{retries})")
time.sleep(wait_time)
else:
print(f"[Error] Non-rate-limit error encountered: {e}")
raise e
raise Exception(f"Failed after {retries} retries due to repeated rate limit errors.")
# --- Basic Agent Definition ---
class BasicAgent:
def __init__(self):
self.agent = CodeAgent(
model=OpenAIServerModel(model_id="gpt-4.1-mini"),
tools=[
DuckDuckGoSearchTool(),
WikipediaSearchTool(),
KeywordExtractorTool(),
TextSummarizationTool(),
TextTranslationTool()
],
add_base_tools=True,
)
print("✅ BasicAgent initialized.")
def __call__(self, question: str) -> str:
"""
Calls the agent's run method to generate a response to the question.
"""
print(f"Agent received question (first 50 chars): {question[:50]}...")
fixed_answer = self.agent.run(question)
print(f"Agent returning answer: {fixed_answer}")
return fixed_answer
# --- Main Logic for Fetching Questions, Running Agent, Submitting Answers ---
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs BasicAgent on them with retry logic on rate limit,
submits all answers, and displays the results.
"""
# Determine HF Space runtime info
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# Instantiate Agent
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(f"Agent Code Repository: {agent_code}")
# Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except Exception as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
# Run Agent on Questions
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for idx, item in enumerate(questions_data, start=1):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
print(f"[{idx}/{len(questions_data)}] Waiting 60 seconds before next request...")
time.sleep(60)
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload,
}
print(f"Submitting {len(answers_payload)} answers...")
# Submit Answers
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"✅ Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
return final_status, results_df
except Exception as e:
print(f"Submission error: {e}")
results_df = pd.DataFrame(results_log)
return f"Submission Failed: {e}", results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False) |