KunaalNaik's picture
Create app.py
c752f17
import streamlit as st
from transformers import pipeline
# Load sentiment analysis model
model = "cardiffnlp/twitter-roberta-base-sentiment-latest"
sentiment_analysis = pipeline("text-classification", model=model)
# Streamlit app
def main():
# Set app title and description
st.title("Sentiment Analysis App")
st.write("Enter text to predict sentiment.")
# User input
text = st.text_area("Text", "")
# Predict sentiment
if st.button("Predict"):
if text.strip() != "":
sentiment = predict_sentiment(text)
score = sentiment['score'] * 100
st.metric(label = f"Sentiment: {sentiment['label']}", value = f"Score: {score:.2f}%")
#st.write(f"Sentiment: {sentiment['label']}")
#st.write(f"Score: {sentiment['score']}")
else:
st.warning("Please enter some text.")
def predict_sentiment(text):
result = sentiment_analysis(text)[0]
return result
if __name__ == "__main__":
main()