import streamlit as st from transformers import pipeline # Load sentiment analysis model model = "cardiffnlp/twitter-roberta-base-sentiment-latest" sentiment_analysis = pipeline("text-classification", model=model) # Streamlit app def main(): # Set app title and description st.title("Sentiment Analysis App") st.write("Enter text to predict sentiment.") # User input text = st.text_area("Text", "") # Predict sentiment if st.button("Predict"): if text.strip() != "": sentiment = predict_sentiment(text) score = sentiment['score'] * 100 st.metric(label = f"Sentiment: {sentiment['label']}", value = f"Score: {score:.2f}%") #st.write(f"Sentiment: {sentiment['label']}") #st.write(f"Score: {sentiment['score']}") else: st.warning("Please enter some text.") def predict_sentiment(text): result = sentiment_analysis(text)[0] return result if __name__ == "__main__": main()