File size: 5,504 Bytes
0730fce
b84432d
 
 
 
0730fce
b84432d
0730fce
 
b84432d
 
 
 
 
 
 
 
0730fce
b84432d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0730fce
 
 
 
 
b84432d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0730fce
b84432d
 
 
0730fce
b84432d
 
0730fce
b84432d
 
 
 
af321f2
5add41c
b84432d
 
 
 
0532cb6
5add41c
b84432d
 
5ca4219
 
 
 
 
b84432d
5ca4219
0730fce
b84432d
d609bee
 
0730fce
b84432d
 
 
0730fce
b84432d
 
 
 
 
0730fce
b84432d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import torch
from torchvision.transforms.functional import normalize
import torch.nn.functional as F
from skimage import io
from PIL import Image, ImageFilter
from transformers import AutoModelForImageSegmentation, AutoImageProcessor, AutoModelForDepthEstimation
import streamlit as st

# Load models
segmentation_model = AutoModelForImageSegmentation.from_pretrained("briaai/RMBG-1.4", trust_remote_code=True)
depth_model = AutoModelForDepthEstimation.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
depth_processor = AutoImageProcessor.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
segmentation_model.to(device)
depth_model.to(device)

# Preprocessing function for segmentation
def preprocess_image(im: np.ndarray, model_input_size: list) -> torch.Tensor:
    if len(im.shape) < 3:
        im = im[:, :, np.newaxis]
    im_tensor = torch.tensor(im, dtype=torch.float32).permute(2, 0, 1)
    im_tensor = F.interpolate(torch.unsqueeze(im_tensor, 0), size=model_input_size, mode='bilinear')
    image = torch.divide(im_tensor, 255.0)
    image = normalize(image, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
    return image

# Postprocessing function for segmentation mask
def postprocess_image(result: torch.Tensor, im_size: list) -> np.ndarray:
    result = torch.squeeze(F.interpolate(result, size=im_size, mode='bilinear'), 0)
    ma = torch.max(result)
    mi = torch.min(result)
    result = (result - mi) / (ma - mi)
    im_array = (result * 255).permute(1, 2, 0).cpu().data.numpy().astype(np.uint8)
    im_array = np.squeeze(im_array)
    return im_array

# Streamlit UI
st.title("Blur Effects App")
st.markdown("Choose between Gaussian blur (segmentation-based) or depth-based lens blur.")

# File uploader
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])

if uploaded_file:
    # Load the uploaded image
    orig_image = Image.open(uploaded_file).convert("RGB")
    orig_im_size = orig_image.size
    orig_im_np = np.array(orig_image)

    # Display original image
    st.image(orig_image, caption="Uploaded Image", use_column_width=True)

    # Effect selection
    effect_option = st.radio("Choose an effect", ("Gaussian Blur (Segmentation)", "Lens Blur (Depth Map)"))

    if effect_option == "Gaussian Blur (Segmentation)":
        # Gaussian Blur (Segmentation-Based)
        st.subheader("Gaussian Blur (Segmentation)")
        # Preprocess image for segmentation
        model_input_size = [256, 256]  # Resize for model compatibility
        image = preprocess_image(orig_im_np, model_input_size).to(device)

        # Inference using the segmentation model
        with torch.no_grad():
            result = segmentation_model(image)

        # Postprocess result to generate mask
        result_image = postprocess_image(result[0][0], orig_im_size)
        pil_mask_im = Image.fromarray(result_image)

        # Create binary mask for background and foreground separation
        binary_mask = pil_mask_im.point(lambda p: 255 if p > 170 else 0, '1')

        # Gaussian blur for background
        blur_intensity = st.slider("Blur Intensity (σ)", min_value=1, max_value=30, value=15)
        blurred_background = orig_image.filter(ImageFilter.GaussianBlur(blur_intensity))

        # Combine blurred background and sharp foreground
        binary_mask_rgba = binary_mask.convert("L").resize(orig_image.size)
        foreground = Image.composite(orig_image, blurred_background, binary_mask_rgba)

        # Display results side by side
        st.image([orig_image, foreground], caption=["Original Image", "Blurred Background"], use_column_width=True)

    elif effect_option == "Lens Blur (Depth Map)":
        # Lens Blur (Depth-Based)
        st.subheader("Lens Blur (Depth Map)")
        # Resize image for depth model processing
        inputs = depth_processor(images=orig_image, return_tensors="pt")

        # Generate depth map
        with torch.no_grad():
            outputs = depth_model(**inputs)
            depth = outputs.predicted_depth.squeeze().cpu().numpy()
        depth = np.array(Image.fromarray(depth).resize(orig_image.size, resample=Image.BICUBIC))

        # Resize depth map back to the original image size
        depth_min, depth_max = np.min(depth), np.max(depth)

        manual_depth_min = depth_min/10
        manual_depth_max = depth_max 

    
        normalized_depth = (depth - depth_min) / (depth_max - depth_min)
        adjusted_depth = np.clip((normalized_depth * (manual_depth_max - manual_depth_min)) + manual_depth_min, 0, 1)

        # Create depth-based blur effect
        max_blur = st.slider("Max Blur Intensity", min_value=1, max_value=10, value=3)
        depth_array = ((1 - adjusted_depth) * max_blur).astype(np.uint8)

        # Create blurred images for depth-based blurring
        blurred_images = [orig_image.filter(ImageFilter.GaussianBlur(i)) for i in range(max_blur + 1)]
        final_image = Image.new("RGB", orig_image.size)

        # Apply depth-based blur pixel by pixel
        for y in range(orig_image.height):
            for x in range(orig_image.width):
                blur_level = min(max_blur, max(0, depth_array[y, x]))
                final_image.putpixel((x, y), blurred_images[blur_level].getpixel((x, y)))

        # Display results side by side
        st.image([orig_image, final_image], caption=["Original Image", "Lens Blur Image"], use_column_width=True)