Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image, ImageFilter
|
4 |
+
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
|
5 |
+
import streamlit as st
|
6 |
+
|
7 |
+
# Load the depth estimation model
|
8 |
+
processor = AutoImageProcessor.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
|
9 |
+
model = AutoModelForDepthEstimation.from_pretrained("depth-anything/Depth-Anything-V2-Small-hf")
|
10 |
+
|
11 |
+
# Streamlit app title
|
12 |
+
st.title("Depth-Based Gaussian Blur App")
|
13 |
+
st.markdown("Upload a photo to apply depth-based blurring and adjust blur intensity.")
|
14 |
+
|
15 |
+
# File uploader
|
16 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
17 |
+
|
18 |
+
if uploaded_file:
|
19 |
+
# Load and preprocess the image
|
20 |
+
input_image = Image.open(uploaded_file).convert("RGB") # Ensure image is RGB format
|
21 |
+
input_image = input_image.resize((512, 512)) # Resize image for processing
|
22 |
+
|
23 |
+
# Display the uploaded image
|
24 |
+
st.image(input_image, caption="Uploaded Image", use_column_width=True)
|
25 |
+
|
26 |
+
# Depth map generation
|
27 |
+
inputs = processor(images=input_image, return_tensors="pt")
|
28 |
+
with torch.no_grad():
|
29 |
+
outputs = model(**inputs)
|
30 |
+
depth = outputs.predicted_depth.squeeze().cpu().numpy()
|
31 |
+
|
32 |
+
# Normalize depth map
|
33 |
+
depth_min, depth_max = np.min(depth), np.max(depth)
|
34 |
+
normalized_depth = (depth - depth_min) / (depth_max - depth_min)
|
35 |
+
adjusted_depth = np.clip(normalized_depth, 0, 1)
|
36 |
+
|
37 |
+
# Blur intensity slider
|
38 |
+
max_blur = st.slider("Max Blur Intensity", min_value=1, max_value=10, value=3)
|
39 |
+
|
40 |
+
# Invert depth for blur
|
41 |
+
depth_array = ((1 - adjusted_depth) * max_blur).astype(np.uint8)
|
42 |
+
|
43 |
+
# Create multiple blurred images
|
44 |
+
blurred_images = [input_image.filter(ImageFilter.GaussianBlur(i)) for i in range(max_blur + 1)]
|
45 |
+
final_image = Image.new("RGB", input_image.size)
|
46 |
+
|
47 |
+
# Apply depth-based blur pixel by pixel
|
48 |
+
for y in range(input_image.height):
|
49 |
+
for x in range(input_image.width):
|
50 |
+
blur_level = min(max_blur, max(0, depth_array[y, x]))
|
51 |
+
final_image.putpixel((x, y), blurred_images[blur_level].getpixel((x, y)))
|
52 |
+
|
53 |
+
# Display the blurred image
|
54 |
+
st.image(final_image, caption="Depth-Based Blurred Image", use_column_width=True)
|