Kofi24's picture
Create app.py
87a1397 verified
raw
history blame contribute delete
14.6 kB
# Paths to uploaded PDFs
pdf_paths = ["/content/sex_education/hhs_gov_teen_pregnancy.pdf", "/content/sex_education/use_of_contraceptives.pdf"]
# Load & split PDFs into pages
from langchain_community.document_loaders import PyPDFLoader
text = ""
for pdf_path in pdf_paths:
loader = PyPDFLoader(pdf_path)
pages = loader.load_and_split()
for page in pages:
text += page.page_content
from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter
# store text in a single document
document = [Document(page_content=text)]
# split document into smaller chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(document)
# Creating Embeddings
from langchain_openai import OpenAIEmbeddings
from google.colab import userdata
import os
os.environ['OPENAI_API_KEY']=userdata.get('OPENAI_API_KEY')
# Openai embedding model
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
from langchain_community.vectorstores import FAISS
# ccreate vector store with similarity search functionality
vector_store = FAISS.from_documents(docs, embeddings)
# Connect to OpenAI models via API & define llm object
import os
from langchain_openai import ChatOpenAI
from google.colab import userdata
os.environ['OPENAI_API_KEY']=userdata.get('OPENAI_API_KEY')
# Define llm object
llm = ChatOpenAI(model_name="gpt-4o-mini", temperature=0)
from langchain_community.tools import tool
from langchain.chat_models import ChatOpenAI
import os
import requests
import json
from typing import List, Dict, Any
from google.colab import userdata
@tool
def get_location(query: str) -> str:
"""
Find locations worldwide using Google Places API v1 and generate a human-friendly response.
Args:
query (str): Search query for any type of location or place
Returns:
str: A conversational, informative response about the locations
"""
# Initialize LLM for generating responses
llm = ChatOpenAI(temperature=0.2, model_name="gpt-4o-mini")
# Validate query
if not query or len(query.strip()) < 3:
return "I'm sorry, but the search query is too short. Could you provide more details about the location you're looking for?"
# Google Places API v1 endpoint
base_url = "https://places.googleapis.com/v1/places:searchText"
# API Key (You would replace this with your actual Google Maps API key)
api_key = userdata.get('GOOGLE_MAPS_API_KEY')
if not api_key:
return "I apologize, but there's a configuration issue with the location search. Our team has been notified."
# Headers for the API request
headers = {
"Content-Type": "application/json",
"X-Goog-Api-Key": api_key,
"X-Goog-FieldMask": "places.displayName,places.formattedAddress,places.rating,places.userRatingCount,places.types"
}
# Request payload
payload = {
"textQuery": query
}
try:
# Make the API request (POST request for the new API)
response = requests.post(base_url, headers=headers, data=json.dumps(payload))
results = response.json()
# Process and return location results
if results.get('places'):
locations = []
for place in results.get('places', [])[:5]: # Limit to 5 results
location_info = {
"name": place.get('displayName', {}).get('text', 'Unnamed Location'),
"address": place.get('formattedAddress', 'Address not available'),
"rating": place.get('rating', 'No rating'),
"total_ratings": place.get('userRatingCount', 'No ratings'),
"types": place.get('types', []),
}
locations.append(location_info)
# Prepare locations for LLM interpretation
locations_str = json.dumps(locations, indent=2)
# Generate a conversational response about the locations
response_prompt = f"""
Given the following location search results for the query "{query}":
{locations_str}
Please generate a friendly, informative response that:
1. Highlights the top locations
2. Provides context about the search results
3. Offers helpful insights or recommendations
4. Keep the tone conversational and helpful
5. If multiple locations are found, summarize key differences
If no locations are found, explain that politely.
"""
# Generate response using LLM
llm_response = llm.invoke(response_prompt).content
return llm_response
else:
# Handle API errors with a friendly message
error_message = results.get('error', {}).get('message', 'Unknown error')
return f"I'm sorry, but I couldn't find any locations matching '{query}'. Error: {error_message}. Could you try a different search?"
except Exception as e:
# Provide a user-friendly error message
error_prompt = f"""
An error occurred while searching for locations with the query "{query}".
Error details: {str(e)}
Please generate a friendly, apologetic message that:
1. Acknowledges the search didn't work
2. Suggests how the user might modify their search
3. Maintains a helpful tone
"""
error_response = llm.invoke(error_prompt).content
return error_response
# Tool metadata
get_location.description = (
"Searches for locations worldwide using Google Places API v1 and LLM-powered insights. "
"Provides conversational, context-rich location information. "
"Requires a valid Google Maps API key."
)
from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain_core.messages import SystemMessage, HumanMessage
@tool
def get_pdf(query: str) -> str:
"""
Search and retrieve information from PDF documents based on a query,
then present it in a conversational and meaningful way.
Args:
query: The search query or question to look up in the PDF documents.
Returns:
A conversational response based on the information found in the PDFs.
"""
# Use a smaller/faster model for query generation
query_llm = ChatOpenAI(model_name="gpt-4o-mini")
# Create MultiQueryRetriever with your existing vector store
retriever = MultiQueryRetriever.from_llm(
retriever=vector_store.as_retriever(search_kwargs={"k": 4}),
llm=query_llm
)
# Get relevant documents
docs = retriever.get_relevant_documents(query)
if not docs:
return "I couldn't find specific information about contraceptive methods for people with disabilities in the available documents. I'd recommend consulting with a healthcare provider who can give personalized advice based on your specific situation."
# Extract document content and metadata
content_with_metadata = []
for doc in docs:
source = doc.metadata.get('source', 'Unknown source')
page = doc.metadata.get('page', 'Unknown page')
content_with_metadata.append({
"content": doc.page_content,
"source": source,
"page": page
})
# Combine all document content
all_content = "\n\n".join([f"Document: {i+1}\nSource: {doc['source']}, Page: {doc['page']}\n{doc['content']}"
for i, doc in enumerate(content_with_metadata)])
# Format the query prompt for GPT-4o-mini
conversation_llm = ChatOpenAI(model_name="gpt-4o-mini")
system_prompt = """
You are a helpful and compassionate assistant providing information about Approaches to preventing Teen Pregnancy,
Recommendations for Contraceptive Use, and Reproductive Health services worldwide.
Based on the information in the provided documents, craft a warm, informative response
to someone asking about query: {query}.
Ensure your response is:
1. Conversational and empathetic
2. Factually accurate based on the retrieved information
3. Acknowledging the diversity of disabilities and individual needs
4. Clear about the importance of consulting healthcare providers for personalized advice
5. Organized and easy to understand
If the documents don't provide sufficient information, acknowledge the limitations and
suggest seeking professional medical advice.
"""
messages = [
SystemMessage(content=system_prompt),
HumanMessage(content=f"Original query: {query}\n\nRetrieved information:\n{all_content}")
]
# Generate conversational response
response = conversation_llm.invoke(messages)
return response.content
# Create the Agentic Application
from typing import Annotated
from langchain_openai import ChatOpenAI
from langchain_core.messages import BaseMessage
from typing_extensions import TypedDict
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition
class State(TypedDict):
messages: Annotated[list, add_messages]
# Create the graph
graph_builder = StateGraph(State)
# Define tools list
tools = [get_pdf, get_location]
# Create LLM and bind tools
llm = ChatOpenAI(model_name="gpt-4o-mini")
llm_with_tools = llm.bind_tools(tools)
def chatbot(state: State):
return {"messages": [llm_with_tools.invoke(state["messages"])]}
# Add nodes
graph_builder.add_node("chatbot", chatbot)
# Create ToolNode
tool_node = ToolNode(tools=tools)
graph_builder.add_node("tools", tool_node)
# Add edges
graph_builder.add_conditional_edges(
"chatbot",
tools_condition,
)
# Any time a tool is called, we return to the chatbot to decide the next step
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")
from langgraph.checkpoint.memory import MemorySaver
# Intatiate MemorySaver class
memory = MemorySaver()
# Add memory
graph = graph_builder.compile(checkpointer=memory)
# Import required libraries
import gradio as gr
from typing import Dict, List, Any
import uuid
from collections import deque
from langchain_core.messages import HumanMessage, AIMessage
# Import the graph we defined earlier
# Make sure the graph is already compiled and the get_location tool is defined
# Session tracking (global)
current_thread_id = "1" # Default thread ID
sessions = {}
def process_message(message, history):
"""Process a user message through the LangGraph agent with streaming."""
global current_thread_id
try:
# Configure the thread_id
config = {"configurable": {"thread_id": current_thread_id}}
# Prepare the message in the format expected by your graph
input_message = {"role": "user", "content": message}
# Stream from the graph
ai_response = ""
events = graph.stream(
{"messages": [input_message]},
config,
stream_mode="values",
)
# Process all events to find the AI response
for event in events:
if "messages" in event:
if isinstance(event["messages"], deque):
event["messages"] = list(event["messages"])
# Look for AI messages
if event["messages"]:
last_message = event["messages"][-1]
if not isinstance(last_message, HumanMessage):
# This is an AI message
ai_response = last_message.content
# If we couldn't get a response, provide a fallback
if not ai_response:
ai_response = "I'm sorry, I couldn't process that request. Could you try again?"
# Return the final conversation state
return history + [[message, ai_response]]
except Exception as e:
error_message = f"An error occurred: {str(e)}"
print(f"Error details: {e}") # Print full error for debugging
return history + [[message, error_message]]
def reset_conversation():
"""Reset the conversation."""
global current_thread_id
# Generate a new thread ID
current_thread_id = str(uuid.uuid4())
# Clear any session data
if current_thread_id in sessions:
del sessions[current_thread_id]
return []
# Add a welcome message to appear when someone connects
def add_welcome_message():
return [[None, "Hi! how may I assist you today?"]]
# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 1rem">
<h1>Sex Education AI Assistant</h1>
<p>Ask me anything about Approaches to preventing Teen Pregnancy, Recommendations for Contraceptive Use, or Reproductive Health services worldwide!</p>
<p>Try asking:</p>
<ul style="list-style-type: none; padding: 0;">
<li>"Find Family Planning services in Kampala"</li>
<li>"I'm 13 years old and want to avoid pregnancy as a teenager. What are the best ways to protect myself and stay safe?"</li>
<li>"I have a disability and am considering using contraceptives. Are they safe for me, and are there any specific factors I should be aware of?"</li>
</ul>
</div>
""")
chatbot = gr.Chatbot(height=500, label="Conversation")
with gr.Row():
msg = gr.Textbox(
placeholder="Ask about any reproductive health services(e.g., 'Find family planning services in New York')",
label="Your search",
container=True
)
with gr.Row():
submit_btn = gr.Button("Search")
clear_btn = gr.Button("New Search")
# Set up event handlers
submit_btn.click(
fn=process_message,
inputs=[msg, chatbot],
outputs=[chatbot]
).then(
lambda: "",
None,
[msg] # Clear the textbox after sending
)
msg.submit(
fn=process_message,
inputs=[msg, chatbot],
outputs=[chatbot]
).then(
lambda: "",
None,
[msg] # Clear the textbox after sending
)
clear_btn.click(
fn=reset_conversation,
inputs=None,
outputs=[chatbot]
)
# Set initial message
demo.load(fn=add_welcome_message, inputs=None, outputs=[chatbot])
# Launch the app with share=True to get a public URL
demo.launch(debug=True, share=True, inline=False)