File size: 14,565 Bytes
87a1397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
# Paths to uploaded PDFs
pdf_paths = ["/content/sex_education/hhs_gov_teen_pregnancy.pdf", "/content/sex_education/use_of_contraceptives.pdf"]

# Load & split PDFs into pages
from langchain_community.document_loaders import PyPDFLoader

text = ""
for pdf_path in pdf_paths:
    loader = PyPDFLoader(pdf_path)
    pages = loader.load_and_split()
    for page in pages:
        text += page.page_content

from langchain_core.documents import Document
from langchain_text_splitters import RecursiveCharacterTextSplitter

# store text in a single document
document = [Document(page_content=text)]

# split document into smaller chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(document)

# Creating Embeddings
from langchain_openai import OpenAIEmbeddings
from google.colab import userdata
import os

os.environ['OPENAI_API_KEY']=userdata.get('OPENAI_API_KEY')

# Openai embedding model
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")

from langchain_community.vectorstores import  FAISS

# ccreate vector store with similarity search functionality
vector_store = FAISS.from_documents(docs, embeddings)

# Connect to OpenAI models via API & define llm object
import os
from langchain_openai import ChatOpenAI
from google.colab import userdata


os.environ['OPENAI_API_KEY']=userdata.get('OPENAI_API_KEY')

# Define llm object
llm = ChatOpenAI(model_name="gpt-4o-mini", temperature=0)

from langchain_community.tools import tool
from langchain.chat_models import ChatOpenAI
import os
import requests
import json
from typing import List, Dict, Any
from google.colab import userdata

@tool
def get_location(query: str) -> str:
    """
    Find locations worldwide using Google Places API v1 and generate a human-friendly response.

    Args:
        query (str): Search query for any type of location or place

    Returns:
        str: A conversational, informative response about the locations
    """
    # Initialize LLM for generating responses
    llm = ChatOpenAI(temperature=0.2, model_name="gpt-4o-mini")

    # Validate query
    if not query or len(query.strip()) < 3:
        return "I'm sorry, but the search query is too short. Could you provide more details about the location you're looking for?"

    # Google Places API v1 endpoint
    base_url = "https://places.googleapis.com/v1/places:searchText"

    # API Key (You would replace this with your actual Google Maps API key)
    api_key = userdata.get('GOOGLE_MAPS_API_KEY')

    if not api_key:
        return "I apologize, but there's a configuration issue with the location search. Our team has been notified."

    # Headers for the API request
    headers = {
        "Content-Type": "application/json",
        "X-Goog-Api-Key": api_key,
        "X-Goog-FieldMask": "places.displayName,places.formattedAddress,places.rating,places.userRatingCount,places.types"
    }

    # Request payload
    payload = {
        "textQuery": query
    }

    try:
        # Make the API request (POST request for the new API)
        response = requests.post(base_url, headers=headers, data=json.dumps(payload))
        results = response.json()

        # Process and return location results
        if results.get('places'):
            locations = []
            for place in results.get('places', [])[:5]:  # Limit to 5 results
                location_info = {
                    "name": place.get('displayName', {}).get('text', 'Unnamed Location'),
                    "address": place.get('formattedAddress', 'Address not available'),
                    "rating": place.get('rating', 'No rating'),
                    "total_ratings": place.get('userRatingCount', 'No ratings'),
                    "types": place.get('types', []),
                }
                locations.append(location_info)

            # Prepare locations for LLM interpretation
            locations_str = json.dumps(locations, indent=2)

            # Generate a conversational response about the locations
            response_prompt = f"""
            Given the following location search results for the query "{query}":

            {locations_str}

            Please generate a friendly, informative response that:
            1. Highlights the top locations
            2. Provides context about the search results
            3. Offers helpful insights or recommendations
            4. Keep the tone conversational and helpful
            5. If multiple locations are found, summarize key differences

            If no locations are found, explain that politely.
            """

            # Generate response using LLM
            llm_response = llm.invoke(response_prompt).content

            return llm_response
        else:
            # Handle API errors with a friendly message
            error_message = results.get('error', {}).get('message', 'Unknown error')
            return f"I'm sorry, but I couldn't find any locations matching '{query}'. Error: {error_message}. Could you try a different search?"

    except Exception as e:
        # Provide a user-friendly error message
        error_prompt = f"""
        An error occurred while searching for locations with the query "{query}".

        Error details: {str(e)}

        Please generate a friendly, apologetic message that:
        1. Acknowledges the search didn't work
        2. Suggests how the user might modify their search
        3. Maintains a helpful tone
        """

        error_response = llm.invoke(error_prompt).content
        return error_response

# Tool metadata
get_location.description = (
    "Searches for locations worldwide using Google Places API v1 and LLM-powered insights. "
    "Provides conversational, context-rich location information. "
    "Requires a valid Google Maps API key."
)

from langchain.retrievers.multi_query import MultiQueryRetriever
from langchain_core.messages import SystemMessage, HumanMessage

@tool
def get_pdf(query: str) -> str:
    """
    Search and retrieve information from PDF documents based on a query,
    then present it in a conversational and meaningful way.

    Args:
        query: The search query or question to look up in the PDF documents.

    Returns:
        A conversational response based on the information found in the PDFs.
    """
    # Use a smaller/faster model for query generation
    query_llm = ChatOpenAI(model_name="gpt-4o-mini")

    # Create MultiQueryRetriever with your existing vector store
    retriever = MultiQueryRetriever.from_llm(
        retriever=vector_store.as_retriever(search_kwargs={"k": 4}),
        llm=query_llm
    )

    # Get relevant documents
    docs = retriever.get_relevant_documents(query)

    if not docs:
        return "I couldn't find specific information about contraceptive methods for people with disabilities in the available documents. I'd recommend consulting with a healthcare provider who can give personalized advice based on your specific situation."

    # Extract document content and metadata
    content_with_metadata = []
    for doc in docs:
        source = doc.metadata.get('source', 'Unknown source')
        page = doc.metadata.get('page', 'Unknown page')
        content_with_metadata.append({
            "content": doc.page_content,
            "source": source,
            "page": page
        })

    # Combine all document content
    all_content = "\n\n".join([f"Document: {i+1}\nSource: {doc['source']}, Page: {doc['page']}\n{doc['content']}"
                            for i, doc in enumerate(content_with_metadata)])

    # Format the query prompt for GPT-4o-mini
    conversation_llm = ChatOpenAI(model_name="gpt-4o-mini")

    system_prompt = """
    You are a helpful and compassionate assistant providing information about Approaches to preventing Teen Pregnancy,
    Recommendations for Contraceptive Use, and Reproductive Health services worldwide.
    Based on the information in the provided documents, craft a warm, informative response
    to someone asking about query: {query}.

    Ensure your response is:
    1. Conversational and empathetic
    2. Factually accurate based on the retrieved information
    3. Acknowledging the diversity of disabilities and individual needs
    4. Clear about the importance of consulting healthcare providers for personalized advice
    5. Organized and easy to understand

    If the documents don't provide sufficient information, acknowledge the limitations and
    suggest seeking professional medical advice.
    """

    messages = [
        SystemMessage(content=system_prompt),
        HumanMessage(content=f"Original query: {query}\n\nRetrieved information:\n{all_content}")
    ]

    # Generate conversational response
    response = conversation_llm.invoke(messages)

    return response.content

# Create the Agentic Application
from typing import Annotated

from langchain_openai  import ChatOpenAI
from langchain_core.messages import BaseMessage
from typing_extensions import TypedDict

from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_condition

class State(TypedDict):
    messages: Annotated[list, add_messages]

# Create the graph
graph_builder = StateGraph(State)

# Define tools list
tools = [get_pdf, get_location]

# Create LLM and bind tools
llm = ChatOpenAI(model_name="gpt-4o-mini")
llm_with_tools = llm.bind_tools(tools)


def chatbot(state: State):
    return {"messages": [llm_with_tools.invoke(state["messages"])]}

# Add nodes
graph_builder.add_node("chatbot", chatbot)

# Create ToolNode
tool_node = ToolNode(tools=tools)
graph_builder.add_node("tools", tool_node)

# Add edges
graph_builder.add_conditional_edges(
    "chatbot",
    tools_condition,
)
# Any time a tool is called, we return to the chatbot to decide the next step
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")

from langgraph.checkpoint.memory import MemorySaver

# Intatiate MemorySaver class
memory = MemorySaver()

# Add memory
graph = graph_builder.compile(checkpointer=memory)

# Import required libraries
import gradio as gr
from typing import Dict, List, Any
import uuid
from collections import deque
from langchain_core.messages import HumanMessage, AIMessage

# Import the graph we defined earlier
# Make sure the graph is already compiled and the get_location tool is defined

# Session tracking (global)
current_thread_id = "1"  # Default thread ID
sessions = {}

def process_message(message, history):
    """Process a user message through the LangGraph agent with streaming."""
    global current_thread_id

    try:
        # Configure the thread_id
        config = {"configurable": {"thread_id": current_thread_id}}

        # Prepare the message in the format expected by your graph
        input_message = {"role": "user", "content": message}

        # Stream from the graph
        ai_response = ""
        events = graph.stream(
            {"messages": [input_message]},
            config,
            stream_mode="values",
        )

        # Process all events to find the AI response
        for event in events:
            if "messages" in event:
                if isinstance(event["messages"], deque):
                    event["messages"] = list(event["messages"])

                # Look for AI messages
                if event["messages"]:
                    last_message = event["messages"][-1]
                    if not isinstance(last_message, HumanMessage):
                        # This is an AI message
                        ai_response = last_message.content

        # If we couldn't get a response, provide a fallback
        if not ai_response:
            ai_response = "I'm sorry, I couldn't process that request. Could you try again?"

        # Return the final conversation state
        return history + [[message, ai_response]]

    except Exception as e:
        error_message = f"An error occurred: {str(e)}"
        print(f"Error details: {e}")  # Print full error for debugging
        return history + [[message, error_message]]

def reset_conversation():
    """Reset the conversation."""
    global current_thread_id

    # Generate a new thread ID
    current_thread_id = str(uuid.uuid4())

    # Clear any session data
    if current_thread_id in sessions:
        del sessions[current_thread_id]

    return []

# Add a welcome message to appear when someone connects
def add_welcome_message():
    return [[None, "Hi! how may I assist you today?"]]

# Create the Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.HTML("""
    <div style="text-align: center; margin-bottom: 1rem">
        <h1>Sex Education AI Assistant</h1>
        <p>Ask me anything about Approaches to preventing Teen Pregnancy, Recommendations for Contraceptive Use, or Reproductive Health services worldwide!</p>
        <p>Try asking:</p>
        <ul style="list-style-type: none; padding: 0;">
            <li>"Find Family Planning services in Kampala"</li>
            <li>"I'm 13 years old and want to avoid pregnancy as a teenager. What are the best ways to protect myself and stay safe?"</li>
            <li>"I have a disability and am considering using contraceptives. Are they safe for me, and are there any specific factors I should be aware of?"</li>
        </ul>
    </div>
    """)

    chatbot = gr.Chatbot(height=500, label="Conversation")

    with gr.Row():
        msg = gr.Textbox(
            placeholder="Ask about any reproductive health services(e.g., 'Find family planning services in New York')",
            label="Your search",
            container=True
        )

    with gr.Row():
        submit_btn = gr.Button("Search")
        clear_btn = gr.Button("New Search")

    # Set up event handlers
    submit_btn.click(
        fn=process_message,
        inputs=[msg, chatbot],
        outputs=[chatbot]
    ).then(
        lambda: "",
        None,
        [msg]  # Clear the textbox after sending
    )

    msg.submit(
        fn=process_message,
        inputs=[msg, chatbot],
        outputs=[chatbot]
    ).then(
        lambda: "",
        None,
        [msg]  # Clear the textbox after sending
    )

    clear_btn.click(
        fn=reset_conversation,
        inputs=None,
        outputs=[chatbot]
    )

    # Set initial message
    demo.load(fn=add_welcome_message, inputs=None, outputs=[chatbot])

# Launch the app with share=True to get a public URL
demo.launch(debug=True, share=True, inline=False)