mohitrajdeo commited on
Commit
698a414
Β·
1 Parent(s): b18caa7

Update README.md with detailed project description, features, quick start guide, and application sections

Browse files
Files changed (1) hide show
  1. README.md +350 -0
README.md CHANGED
@@ -11,3 +11,353 @@ short_description: This tool provides early prediction and analysis for various
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
14
+
15
+
16
+ ---
17
+
18
+ <!-- # 🩺 AI-Powered Health & Lifestyle Disease Prediction
19
+
20
+ Welcome to the **AI-Powered Health Prediction System**! πŸš€
21
+
22
+ This tool provides **early prediction and analysis** for various health conditions using **Machine Learning & NLP**. It is designed to assist users in understanding potential health risks based on their lifestyle and symptoms.
23
+
24
+ ---
25
+
26
+ ## πŸ₯ Available Features:
27
+
28
+ βœ… **Lifestyle Disease Predictor** (Checkbox-based system using BiomedNLP-PubMedBERT)
29
+
30
+ πŸ€– **AI Chatbot for Health Assistance** (Ask health-related questions)
31
+
32
+ 🧠 **Mental Health Assessment** (Analyze sentiment & well-being)
33
+
34
+ 🩸 **Disease Predictors:**
35
+ - Diabetes
36
+ - Asthma
37
+ - Stroke
38
+ - Cardiovascular Disease
39
+
40
+ πŸ“Š **Data Visualizer** (Analyze trends in health conditions)
41
+
42
+ πŸ›  **User-friendly Interface** (Easy navigation and interactive elements)
43
+
44
+ πŸ”” **Personalized Health Insights** (Recommendations based on user input)
45
+
46
+ πŸ‘‰ **Select an option from the sidebar to proceed!**
47
+
48
+ ---
49
+
50
+ ## πŸš€ Quick Start Guide
51
+
52
+ 1. Clone this repository:
53
+ ```bash
54
+ git clone https://github.com/MOHITRAJDEO12345/early-prediction-for-ml_proj.git
55
+ ```
56
+ 2. Navigate to the project directory:
57
+ ```bash
58
+ cd early-prediction-for-ml_proj
59
+ ```
60
+ 3. Install dependencies:
61
+ ```bash
62
+ pip install -r requirements.txt
63
+ ```
64
+ 4. Run the application:
65
+ ```bash
66
+ streamlit run app.py
67
+ ```
68
+
69
+ ---
70
+
71
+ ## πŸ–₯ Application Sections
72
+
73
+ The application includes the following navigation options:
74
+
75
+ ```python
76
+ options = [
77
+ 'Home',
78
+ 'Checkbox-to-disease-predictor',
79
+ 'AI Health Consultant',
80
+ 'Mental-Analysis',
81
+ 'Diabetes Prediction',
82
+ 'Asthma Prediction',
83
+ 'Cardiovascular Disease Prediction',
84
+ 'Stroke Prediction',
85
+ 'Sleep Health Analysis',
86
+ 'Data Visualization',
87
+ 'Text-based Disease Prediction'
88
+ ]
89
+ ```
90
+
91
+ ### 🧠 Mental Health Analysis
92
+ - NOTE: the trained model was not upto mark so we switched to gated transformer model
93
+ - Uses **mental/mental-roberta-base** for sentiment-based mental health assessment.
94
+ - Predicts **Depression and Anxiety** based on user input.
95
+ - Provides graphical risk assessment using **Seaborn & Matplotlib**.
96
+
97
+ ### πŸ”¬ Disease Prediction Models
98
+ - NOTE: only those diseases have been taken that can be predicted wihtout diagnostic results and some of the features have been discared for training
99
+ - **Diabetes Model**: Predicts diabetes risk using medical indicators.
100
+ - **Asthma Model**: Uses preprocessed datasets to detect asthma likelihood.
101
+ - **Cardiovascular Model**: XGBoost-based prediction for heart disease.
102
+ - **Stroke Model**: Uses ML models to assess stroke risk factors.
103
+
104
+ ### πŸ“ Text-based Disease Prediction
105
+ - Uses **distilbert-base-uncased** for text-based disease prediction.
106
+ - Allows users to input symptoms via text or audio.
107
+ - Predicts possible lifestyle diseases based on user input.
108
+ - Provides graphical risk assessment using **Seaborn & Matplotlib**.
109
+
110
+ ---
111
+
112
+ ## πŸ“Έ Screenshots & UI Preview
113
+
114
+ πŸ” **Streamlit Application Interface:**
115
+
116
+ - NOTE: for functionality purpose only
117
+ - YOUTUBE: https://youtu.be/abrRqceVuDU
118
+ ![Streamlit UI](screenshots/streamlit.png)
119
+
120
+ πŸ“Š **Data Visualization Example:**
121
+ - NOTE: currently showing datasets
122
+ it will be used for visualizing anomalies in user predictions it will become personalized
123
+ ![Data Visualization](screenshots/data_visual.png)
124
+ ![User Graph](screenshots/user_graph.png)
125
+
126
+ πŸ–₯ **Separate Frontend Interface:**
127
+ - NOTE: the frontend is currently not connected with ml models and it may behave wrongly
128
+ - WORKING: https://v0.dev/chat/community/lifestyle-disease-prediction-ADp1mOc0hKg
129
+ - YOUTUBE: https://youtu.be/DU4FW-8hSoU
130
+ ![Frontend UI](screenshots/frontend.png)
131
+
132
+ ---
133
+
134
+ ## ⚠️ Disclaimer
135
+
136
+ This application has been developed using real-world healthcare datasets sourced from Kaggle:
137
+
138
+ - **Stroke Prediction Dataset**
139
+ - **Asthma Analysis & Prediction Dataset**
140
+ - **Diabetes Dataset**
141
+ - **Cardiovascular Disease Dataset**
142
+ - **Sentiment Analysis for Mental Health**
143
+
144
+ The predictions are generated using machine learning models trained on these datasets, incorporating evaluation metrics and graphical insights to enhance interpretability.
145
+
146
+ However, this tool has **not undergone clinical validation** and should be used for **informational and educational purposes only**. It is not intended to serve as a substitute for **professional medical diagnosis or treatment**. Always consult a qualified healthcare provider for medical advice.
147
+
148
+ ---
149
+
150
+ # colab
151
+ - https://colab.research.google.com/drive/1DpOH7KgTWubr5qQjj13EDqxIqsbPLDQe?usp=sharing#scrollTo=EgbDF0U5L1l2
152
+ - https://colab.research.google.com/drive/1GI7Z1GPPUi67X6UssCQVJXr_QoysfJrz#scrollTo=XkcDpRRzFCIX
153
+ - https://colab.research.google.com/drive/1eZIBboyY_x0ZsJp5G10XrFFu4aG4eCuf#scrollTo=3NDJOlrEpmoL
154
+ - http://colab.research.google.com/drive/11KO6cvyTeYY_v5PnYqTwheEupJtNjfCr?usp=sharing#scrollTo=7EyXbXJkPnqf
155
+ - https://colab.research.google.com/drive/1-B7Q8hXHD0iIBvVldnLkvCiWGhJ2iYNL?usp=sharing
156
+ - https://colab.research.google.com/drive/1inXO2_JvTw6fOXiJGaW_0pJvI_3sNo0T?usp=sharing
157
+ - https://colab.research.google.com/drive/1NpwO0NBOKQBtUuN9cC-CXE4vuP5TCavY?usp=sharing
158
+ - https://colab.research.google.com/drive/10W68SdZHS3IvJAjFTBoqEFI5g7USZVo9?usp=sharing
159
+ - https://colab.research.google.com/drive/1J8xvEs7rDn0NLYIzH5S2UgFt-lOk7TA6?usp=sharing
160
+ - https://colab.research.google.com/drive/1BeDmCVjVLb3uqUHdnafgLMLItAtgsAsN?usp=sharing
161
+ -
162
+ ---
163
+
164
+ ## πŸ“Œ Modular Features (Pending Integration)
165
+
166
+ Several functionalities have been implemented but are pending Streamlit integration for optimization:
167
+
168
+ βœ… **User Login & Basic Inputs**: Secure authentication and user profile management.
169
+ βœ… **Personalized Email Reports**: Automated daily, weekly, and monthly health insights.
170
+ βœ… **Anomaly Visualization**: Analyzes past predictions to detect anomalies.
171
+ βœ… **Workout Plans**: AI-driven personalized workout routines based on health data.
172
+ βœ… **Sleep Analysis**: AI-powered sleep tracking and recommendations.
173
+ βœ… **Medication Adherence**: Reminders and tracking for prescribed medications.
174
+ βœ… **Nutrition Recommendations**: AI-based meal planning and dietary suggestions.
175
+ βœ… **Community & Resources**: A section for health articles, discussions, and expert Q&A.
176
+
177
+ ---
178
+
179
+ ## πŸ”¬ Ongoing Research & Future Enhancements
180
+
181
+ 🚧 **Fitbit API Integration** – Real-time health monitoring with wearable devices.
182
+ 🚧 **LSTM Models for Realtime Fitbit Data** – Developing deep learning models for dynamic health tracking.
183
+ 🚧 **Enhanced Mental Health Analysis** – Exploring transformer-based sentiment models for deeper insights.
184
+ 🚧 **Hybrid ML & NLP Systems** – Combining structured health data with unstructured text for more accurate predictions.
185
+
186
+ ---
187
+
188
+ ## πŸ‘¨β€πŸ’» Author
189
+
190
+ Developed by **Mohit Rajdeo**
191
+ GitHub: [MOHITRAJDEO12345](https://github.com/MOHITRAJDEO12345)
192
+
193
+ ---
194
+
195
+ ## 🀝 Contributions
196
+
197
+ Contributions are always welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.
198
+
199
+ ---
200
+
201
+ ## πŸ“¬ Contact
202
+
203
+ For any questions or feedback, feel free to reach out:
204
+
205
+ πŸ“§ Email: [email protected]
206
+ 🐦 Twitter: [@mohitrajdeo](https://twitter.com/mohitrajdeo) -->
207
+
208
+
209
+
210
+ # 🩺 Early Prediction of Health & Lifestyle Diseases
211
+
212
+ Welcome to the **AI-Powered Health Prediction System**! πŸš€
213
+
214
+ This tool provides **early prediction and analysis** for various health conditions using **Machine Learning & NLP**. It assists users in understanding potential health risks based on their lifestyle, medical indicators, and symptoms.
215
+
216
+ ---
217
+
218
+ ## πŸ₯ Available Features:
219
+
220
+ βœ… **Diabetes Prediction** – Predict diabetes risk using medical indicators.
221
+
222
+ βœ… **Hypertension Prediction** – Assess the risk of high blood pressure.
223
+
224
+ βœ… **Cardiovascular Disease Prediction** – XGBoost-based prediction for heart disease.
225
+
226
+ βœ… **Stroke Prediction** – Machine Learning-based stroke risk analysis.
227
+
228
+ βœ… **Asthma Prediction** – Detect asthma likelihood using preprocessed datasets.
229
+
230
+ βœ… **Sleep Health Analysis** – AI-driven analysis of sleep patterns and health.
231
+
232
+ βœ… **Mental Health Assessment** – Sentiment-based analysis using **mental-roberta-base**.
233
+
234
+ βœ… **Medical Consultant AI Chatbot** – Ask health-related questions for AI-driven insights.
235
+
236
+ βœ… **Data Visualization** – Graphical representation of health trends and anomalies.
237
+
238
+ πŸ‘‰ **Select an option from the sidebar to proceed!**
239
+
240
+ ---
241
+
242
+ ## πŸš€ Quick Start Guide
243
+
244
+ 1. Clone this repository:
245
+ ```bash
246
+ git clone https://github.com/MOHITRAJDEO12345/early-prediction-for-ml_proj.git
247
+ ```
248
+ 2. Navigate to the project directory:
249
+ ```bash
250
+ cd early-prediction-for-ml_proj
251
+ ```
252
+ 3. Install dependencies:
253
+ ```bash
254
+ pip install -r requirements.txt
255
+ ```
256
+ 4. Run the application:
257
+ ```bash
258
+ streamlit run app.py
259
+ ```
260
+
261
+ ---
262
+
263
+ ## πŸ–₯ Application Sections
264
+
265
+ The application includes the following navigation options:
266
+
267
+ ```python
268
+ options = [
269
+ 'Home',
270
+ 'Diabetes Prediction',
271
+ 'Hypertension Prediction',
272
+ 'Cardiovascular Disease Prediction',
273
+ 'Stroke Prediction',
274
+ 'Asthma Prediction',
275
+ 'Sleep Health Analysis',
276
+ 'Mental-Analysis',
277
+ 'Medical Consultant',
278
+ 'Data Visualization'
279
+ ]
280
+ ```
281
+
282
+ ### 🧠 Mental Health Analysis
283
+ - Uses **mental/mental-roberta-base** for sentiment-based mental health assessment.
284
+ - Predicts **Depression and Anxiety** based on user input.
285
+ - Provides graphical risk assessment using **Seaborn & Matplotlib**.
286
+
287
+ ### πŸ”¬ Disease Prediction Models
288
+ - **Diabetes Model**: Predicts diabetes risk based on medical data.
289
+ - **Hypertension Model**: Evaluates high blood pressure risk.
290
+ - **Cardiovascular Model**: Uses XGBoost for heart disease prediction.
291
+ - **Stroke Model**: ML-based assessment of stroke risk factors.
292
+ - **Asthma Model**: Machine learning model for asthma detection.
293
+
294
+ ### πŸ“Š Data Visualization
295
+ - Interactive graphs to analyze health trends.
296
+ - Anomaly detection for user predictions.
297
+
298
+ ### πŸ€– AI Medical Consultant
299
+ - AI-powered chatbot for answering health-related queries.
300
+ - Uses NLP models for better understanding and recommendations.
301
+
302
+ ---
303
+
304
+ ## πŸ“Έ Screenshots & UI Preview
305
+
306
+ πŸ” **Streamlit Application Interface:**
307
+ ![Streamlit UI](screenshots/streamlit.png)
308
+
309
+ πŸ“Š **Data Visualization Example:**
310
+ ![Data Visualization](screenshots/data_visual.png)
311
+ ![User Graph](screenshots/user_graph.png)
312
+
313
+ πŸ–₯ **Separate Frontend Interface:**
314
+ ![Frontend UI](screenshots/frontend.png)
315
+
316
+ ---
317
+
318
+ ## ⚠️ Disclaimer
319
+
320
+ This application has been developed using real-world healthcare datasets sourced from Kaggle:
321
+
322
+ - **Diabetes Dataset**
323
+ - **Hypertension Dataset**
324
+ - **Cardiovascular Disease Dataset**
325
+ - **Stroke Prediction Dataset**
326
+ - **Asthma Analysis & Prediction Dataset**
327
+ - **Sentiment Analysis for Mental Health**
328
+
329
+ The predictions are generated using machine learning models trained on these datasets, incorporating evaluation metrics and graphical insights to enhance interpretability.
330
+
331
+ However, this tool has **not undergone clinical validation** and should be used for **informational and educational purposes only**. It is not intended to serve as a substitute for **professional medical diagnosis or treatment**. Always consult a qualified healthcare provider for medical advice.
332
+
333
+ ---
334
+
335
+ # πŸ”¬ Ongoing Research & Future Enhancements
336
+
337
+ 🚧 **Fitbit API Integration** – Real-time health monitoring with wearable devices.
338
+ 🚧 **LSTM Models for Realtime Fitbit Data** – Developing deep learning models for dynamic health tracking.
339
+ 🚧 **Enhanced Mental Health Analysis** – Exploring transformer-based sentiment models for deeper insights.
340
+ 🚧 **Hybrid ML & NLP Systems** – Combining structured health data with unstructured text for more accurate predictions.
341
+
342
+ ---
343
+
344
+ ## πŸ‘¨β€πŸ’» Author
345
+
346
+ Developed by **Mohit Rajdeo**
347
+ GitHub: [MOHITRAJDEO12345](https://github.com/MOHITRAJDEO12345)
348
+
349
+ ---
350
+
351
+ ## 🀝 Contributions
352
+
353
+ Contributions are always welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.
354
+
355
+ ---
356
+
357
+ ## πŸ“¬ Contact
358
+
359
+ For any questions or feedback, feel free to reach out:
360
+
361
+ πŸ“§ Email: [email protected]
362
+ 🐦 Twitter: [@mohitrajdeo](https://twitter.com/mohitrajdeo)
363
+