mohitrajdeo commited on
Commit
b18caa7
·
1 Parent(s): 00c8931

Add initial project dependencies and model artifacts

Browse files
app.py ADDED
@@ -0,0 +1,949 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import pandas as pd
4
+ import joblib
5
+ import pickle
6
+ import streamlit as st
7
+ import seaborn as sns
8
+ from streamlit_option_menu import option_menu
9
+ import time
10
+ import matplotlib.pyplot as plt
11
+ import json
12
+ import google.generativeai as genai
13
+ from dotenv import load_dotenv
14
+ from transformers import pipeline
15
+
16
+ # Set page config with icon
17
+ st.set_page_config(page_title="Disease Prediction", page_icon="🩺", layout="wide")
18
+
19
+ diabetes_model = pickle.load(open('diabetes/diabetes_model.sav', 'rb'))
20
+ # asthama_model = pickle.load(open('asthama/model.pkl', 'rb'))
21
+
22
+ import joblib
23
+ asthama_model = joblib.load("asthama/model.pkl")
24
+
25
+ cardio_model = pickle.load(open('cardio_vascular/xgboost_cardiovascular_model.pkl', 'rb'))
26
+
27
+ # stroke_model = pickle.load(open('stroke/stroke_model.sav', 'rb'))
28
+
29
+ stroke_model = joblib.load("stroke/finalized_model.pkl")
30
+
31
+ prep_asthama = pickle.load(open('asthama/preprocessor.pkl', 'rb'))
32
+
33
+ # sleep_model = pickle.load(open('sleep_health/best_model.pkl', 'rb'))
34
+ # scaler = pickle.load(open('sleep_health/scaler.pkl', 'rb'))
35
+ # label_encoder = pickle.load(open('sleep_health/label_encoders.pkl', 'rb'))
36
+
37
+ # At the beginning of your app, when loading models:
38
+ try:
39
+ sleep_model = pickle.load(open('sleep_health/svc_model.pkl', 'rb'))
40
+ scaler = pickle.load(open('sleep_health/scaler.pkl', 'rb'))
41
+ label_encoder = pickle.load(open('sleep_health/label_encoders.pkl', 'rb'))
42
+
43
+ # Store the expected feature names if available
44
+ # This depends on how your model was saved/trained
45
+ # if hasattr(sleep_model, 'feature_names_in_'):
46
+ # expected_features = sleep_model.feature_names_in_
47
+ # else:
48
+ # # Try to load feature names from a separate file
49
+ # try:
50
+ # with open('sleep_health/feature_names.pkl', 'rb') as f:
51
+ # expected_features = pickle.load(f)
52
+ # except:
53
+ # st.warning("Warning: Feature names not found. Predictions may be inaccurate.")
54
+ # expected_features = None
55
+
56
+ except FileNotFoundError:
57
+ st.error("Error: Model files not found. Please upload the model files.")
58
+ st.stop()
59
+
60
+ with st.sidebar:
61
+ st.title("🩺 Disease Prediction")
62
+
63
+ selected = option_menu(
64
+ menu_title="Navigation",
65
+ options=['Home', 'Diabetes Prediction','Hypertension Prediction', 'Cardiovascular Disease Prediction', 'Stroke Prediction','Asthma Prediction', 'Sleep Health Analysis','Mental-Analysis','Medical Consultant', 'Data Visualization'],
66
+ icons=['house', 'activity', 'lungs', 'heart-pulse', 'brain', 'bar-chart', 'chat'],
67
+ menu_icon="cast",
68
+ default_index=0,
69
+ styles={
70
+ "container": {"padding": "5px", "background-color": "#111111"}, # Darker background
71
+ "icon": {"color": "#FF0000", "font-size": "20px"}, # Red icons
72
+ "nav-link": {"font-size": "16px", "text-align": "left", "margin": "0px", "color": "#FFFFFF"}, # White text
73
+ "nav-link-selected": {"background-color": "#FF0000", "color": "#FFFFFF"},
74
+ }
75
+ )
76
+
77
+
78
+ # 'Checkbox-to-disease-predictor',
79
+ # 'Text-based Disease Prediction',
80
+ # Utility function to safely convert input to float
81
+ def safe_float(value, default=0.0):
82
+ try:
83
+ return float(value)
84
+ except ValueError:
85
+ return default # Assigns default value if conversion fails
86
+
87
+
88
+ # 🚀 Home Page
89
+ if selected == 'Home':
90
+ st.title("🩺 Early Prediction of Health & Lifestyle Diseases")
91
+
92
+ st.markdown("""
93
+ ## Welcome to the **Early Prediction of Health & Lifestyle Diseases**!
94
+ This tool provides **early prediction and analysis** for various health conditions using **Machine Learning & NLP**.
95
+
96
+ ### 🏥 Available Features:
97
+ - **✅ Checkbox-based Lifestyle Disease Predictor** using **BiomedNLP-PubMedBERT**
98
+ - **🤖 AI Chatbot for Health Assistance** (Ask health-related questions)
99
+ - **🧠 Mental Health Assessment**
100
+ - **🩸 Disease Predictors**:
101
+ - Diabetes
102
+ - Asthma
103
+ - Stroke
104
+ - Cardiovascular Disease
105
+ - **📊 Data Visualizer** (Analyze trends in health conditions)
106
+
107
+ 👉 Select an option from the sidebar to proceed!
108
+ """)
109
+
110
+ with st.expander("🚀 Quick Start Guide"):
111
+ st.write("""
112
+ 1. Select a **health prediction model** from the sidebar.
113
+ 2. Enter your details in the input fields.
114
+ 3. Click **Predict** to get your result.
115
+ 4. View personalized **health insights & recommendations**.
116
+ """)
117
+
118
+
119
+ # Disclaimer Section
120
+ st.markdown("---")
121
+ # st.markdown("""
122
+ # **⚠️ Disclaimer:** This application has been developed using **real-world healthcare datasets** sourced from Kaggle:
123
+
124
+ # - [Stroke Prediction Dataset](http://kaggle.com/code/chanchal24/stroke-prediction-using-python/input?select=healthcare-dataset-stroke-data.csv)
125
+ # - [Asthma Analysis & Prediction](https://www.kaggle.com/code/bryamblasrimac/asthma-eda-prediction-f2score-85/input)
126
+ # - [Diabetes Dataset](https://www.kaggle.com/datasets/mathchi/diabetes-data-set)
127
+ # - [Cardiovascular Disease Dataset](https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset)
128
+ # - [Sentiment Analysis for Mental Health](https://www.kaggle.com/datasets/suchintikasarkar/sentiment-analysis-for-mental-health)
129
+ # - [Sleep Health Analysis](https://www.kaggle.com/datasets/uom190346a/sleep-health-and-lifestyle-dataset)
130
+ # \
131
+
132
+
133
+ st.markdown("""
134
+ The predictions are generated using **machine learning models** trained on these datasets, incorporating **evaluation metrics and graphical insights** to enhance interpretability.
135
+
136
+ However, this tool has **not undergone clinical validation** and should be used **for informational and educational purposes only**. It is not intended to serve as a substitute for professional medical diagnosis or treatment. Always consult a qualified healthcare provider for medical advice.
137
+ """)
138
+
139
+
140
+ if selected == 'Diabetes Prediction':
141
+ st.title('🩸 Diabetes Prediction using ML (SVC)')
142
+ st.image("https://cdn-icons-png.flaticon.com/512/2919/2919950.png", width=100)
143
+
144
+ st.markdown("""
145
+ This model predicts the likelihood of **Diabetes** based on various health parameters.
146
+ Please enter the required medical details below and click **"Diabetes Test Result"** to get the prediction.
147
+ """)
148
+
149
+
150
+
151
+ # Create columns for better input organization
152
+ col1, col2 = st.columns(2)
153
+
154
+ with col1:
155
+ Pregnancies = safe_float(st.text_input("Number of Pregnancies", "0"))
156
+ Glucose = safe_float(st.text_input("Glucose Level", "100"))
157
+ BloodPressure = safe_float(st.text_input("Blood Pressure", "80"))
158
+ SkinThickness = safe_float(st.text_input("Skin Thickness", "20"))
159
+
160
+ with col2:
161
+ Insulin = safe_float(st.text_input("Insulin Level", "79"))
162
+ BMI = safe_float(st.text_input("BMI (Body Mass Index)", "25.0"))
163
+ DiabetesPedigreeFunction = safe_float(st.text_input("Diabetes Pedigree Function", "0.5"))
164
+ Age = st.number_input("Enter Age", min_value=10, max_value=100, value=30, step=1)
165
+
166
+ with col1:
167
+ if st.button('Diabetes Test Result'):
168
+ try:
169
+ input_data = np.array([[Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age]])
170
+
171
+ with st.spinner("⏳ Predicting... Please wait..."):
172
+ time.sleep(2) # Simulating delay (remove in actual use)
173
+ diab_prediction = diabetes_model.predict(input_data)
174
+
175
+
176
+
177
+ result = "🛑 The person is diabetic" if diab_prediction[0] == 1 else "✅ The person is not diabetic"
178
+ if diab_prediction[0] == 0:
179
+ # st.balloons() # Or use st.confetti() if you install the library
180
+ st.success(result)
181
+
182
+ except Exception as e:
183
+ st.error(f"❌ Error: {e}")
184
+
185
+
186
+ if selected == 'Asthma Prediction':
187
+ st.title('🌬️ Asthma Prediction using ML')
188
+ st.image("https://cdn-icons-png.flaticon.com/512/3462/3462191.png", width=100)
189
+
190
+ st.markdown("""
191
+ This model predicts the likelihood of **Asthma** based on health factors.
192
+ Enter your details and click **"Asthma Test Result"** to get the prediction.
193
+ """)
194
+
195
+ col1, col2 = st.columns(2)
196
+
197
+ with col1:
198
+ Gender_Male = st.radio("Gender", ["Female", "Male"])
199
+ Gender_Male = 1 if Gender_Male == "Male" else 0
200
+
201
+ Smoking_Status = st.radio("Smoking Status", ["Non-Smoker", "Ex-Smoker"])
202
+ Smoking_Status_Ex_Smoker = 1 if Smoking_Status == "Ex-Smoker" else 0
203
+ Smoking_Status_Non_Smoker = 1 if Smoking_Status == "Non-Smoker" else 0
204
+
205
+ with col2:
206
+ # Use actual age as input instead of normalized value
207
+ actual_age = st.slider("Age", min_value=18, max_value=85, value=40, help="Your actual age in years")
208
+
209
+ # Convert actual age to normalized value (0.0 to 0.914894)
210
+ # Assuming normalization was done with min_age=18 and max_age=90
211
+ min_age = 18
212
+ max_age = 90
213
+ Age = (actual_age - min_age) / (max_age - min_age)
214
+
215
+ # Show the normalized value for reference (can be hidden in final version)
216
+ st.info(f"Normalized age value (used by model): {Age:.6f}")
217
+
218
+ Peak_Flow = st.slider("Peak Flow (L/sec)", min_value=0.1, max_value=1.0, value=0.5)
219
+
220
+ with col1:
221
+ if st.button('Asthma Test Result'):
222
+ try:
223
+ # Prepare raw input
224
+ raw_input = np.array([[Gender_Male, Smoking_Status_Ex_Smoker, Smoking_Status_Non_Smoker, Age, Peak_Flow]])
225
+
226
+ # Check if preprocessing is needed
227
+ if prep_asthama is not None and hasattr(prep_asthama, "transform"):
228
+ processed_input = prep_asthama.transform(raw_input) # Use transform if prep_asthama exists
229
+ else:
230
+ processed_input = raw_input # If no scaler, use raw input
231
+
232
+ with st.spinner("⏳ Predicting... Please wait..."):
233
+ time.sleep(2) # Simulating delay (remove in actual use)
234
+ asthma_prediction = asthama_model.predict(processed_input)
235
+
236
+ result = "🛑 High risk of asthma" if asthma_prediction[0] == 1 else "✅ Low risk of asthma"
237
+ if asthma_prediction[0] == 0:
238
+ # st.balloons()
239
+ st.success(result)
240
+ else:
241
+ st.error(result)
242
+
243
+ # Add risk factor analysis
244
+ st.subheader("Risk Factor Analysis")
245
+ risk_factors = []
246
+
247
+ if actual_age > 60:
248
+ risk_factors.append("⚠️ Age is a risk factor for asthma")
249
+ if Smoking_Status == "Ex-Smoker":
250
+ risk_factors.append("⚠️ Smoking history increases asthma risk")
251
+ if Peak_Flow < 0.5:
252
+ risk_factors.append("⚠️ Low peak flow readings may indicate restricted airways")
253
+
254
+ if risk_factors:
255
+ for factor in risk_factors:
256
+ st.markdown(factor)
257
+ else:
258
+ st.markdown("✅ No significant risk factors identified")
259
+
260
+ except Exception as e:
261
+ st.error(f"❌ Error: {e}")
262
+ st.info("If you have access to the preprocessing pipeline, you can check the exact age normalization formula used during model training.")
263
+
264
+
265
+ if selected == 'Cardiovascular Disease Prediction':
266
+ st.title('❤️ Cardiovascular Disease Prediction')
267
+ st.image("https://cdn-icons-png.flaticon.com/512/2919/2919950.png", width=100)
268
+
269
+ st.markdown("""
270
+ This model predicts the likelihood of **Cardiovascular Disease** based on various health parameters.
271
+ Please enter the required medical details below and click **"Cardio Test Result"** to get the prediction.
272
+ """)
273
+
274
+ # Input Fields
275
+ col1, col2 = st.columns(2)
276
+
277
+ with col1:
278
+ age = st.number_input("Age", min_value=29, max_value=64, value=40, step=1)
279
+ ap_hi = st.slider("Systolic Blood Pressure (ap_hi)", min_value=90, max_value=180, value=120)
280
+ ap_lo = st.slider("Diastolic Blood Pressure (ap_lo)", min_value=60, max_value=120, value=80)
281
+ weight = st.number_input("Weight (kg)", min_value=40.0, max_value=180.0, value=70.0, step=0.1)
282
+
283
+ with col2:
284
+ cholesterol = st.radio("Cholesterol Level", ["Normal", "Above Normal", "Well Above Normal"])
285
+ cholesterol = {"Normal": 1, "Above Normal": 2, "Well Above Normal": 3}[cholesterol]
286
+
287
+ gluc = st.radio("Glucose Level", ["Normal", "Above Normal", "Well Above Normal"])
288
+ gluc = {"Normal": 1, "Above Normal": 2, "Well Above Normal": 3}[gluc]
289
+
290
+ smoke = st.radio("Smoking Status", ["No", "Yes"])
291
+ smoke = 1 if smoke == "Yes" else 0
292
+
293
+ alco = st.radio("Alcohol Consumption", ["No", "Yes"])
294
+ alco = 1 if alco == "Yes" else 0
295
+
296
+ active = st.radio("Physically Active", ["No", "Yes"])
297
+ active = 1 if active == "Yes" else 0
298
+
299
+ # Prediction Button
300
+ if st.button('Cardio Test Result'):
301
+ try:
302
+ # Preparing Input Data
303
+ input_data = np.array([[age, ap_hi, ap_lo, cholesterol, gluc, smoke, alco, active, weight]])
304
+
305
+ with st.spinner("⏳ Predicting... Please wait..."):
306
+ time.sleep(2) # Simulating Model Inference
307
+ cardio_prediction = cardio_model.predict(input_data)
308
+
309
+ # Display Result
310
+ result = "🛑 High risk of cardiovascular disease" if cardio_prediction[0] == 1 else "✅ Low risk of cardiovascular disease"
311
+ if cardio_prediction[0] == 0:
312
+ # st.balloons()
313
+ st.success(result)
314
+
315
+ except Exception as e:
316
+ st.error(f"❌ Error: {e}")
317
+
318
+
319
+
320
+
321
+
322
+ if selected == 'Stroke Prediction':
323
+ st.title('🧠 Stroke Prediction using ML')
324
+ st.image("https://cdn-icons-png.flaticon.com/512/3209/3209265.png", width=100)
325
+
326
+ st.markdown("""
327
+ This model predicts the likelihood of **Stroke** based on various health factors.
328
+ Enter your details and click **"Stroke Test Result"** to get the prediction.
329
+ """)
330
+
331
+ col1, col2 = st.columns(2)
332
+
333
+ with col1:
334
+ Age = st.number_input("Age", min_value=0, max_value=82, value=50, step=1)
335
+ Hypertension = st.radio("Hypertension", ["No", "Yes"])
336
+ Hypertension = 1 if Hypertension == "Yes" else 0
337
+
338
+ Heart_Disease = st.radio("Heart Disease", ["No", "Yes"])
339
+ Heart_Disease = 1 if Heart_Disease == "Yes" else 0
340
+
341
+ with col2:
342
+ Ever_Married = st.radio("Ever Married", ["No", "Yes"])
343
+ Ever_Married = 1 if Ever_Married == "Yes" else 0
344
+
345
+ Avg_Glucose_Level = st.slider("Average Glucose Level", min_value=55.23, max_value=267.61, value=120.0)
346
+ BMI = st.slider("BMI", min_value=13.5, max_value=97.6, value=25.0)
347
+
348
+ Smoking_Status = st.selectbox("Smoking Status", ["Never Smoked", "Former Smoker", "Smokes", "Unknown"])
349
+ Smoking_Status = {"Never Smoked": 0, "Former Smoker": 1, "Smokes": 2, "Unknown": 3}[Smoking_Status]
350
+
351
+ with col1:
352
+ if st.button('Stroke Test Result'):
353
+ try:
354
+ input_data = np.array([[Age, Hypertension, Heart_Disease, Ever_Married, Avg_Glucose_Level, BMI, Smoking_Status]])
355
+
356
+ with st.spinner("⏳ Predicting... Please wait..."):
357
+ time.sleep(2)
358
+ stroke_prediction = stroke_model.predict(input_data)
359
+
360
+ result = "🛑 High risk of stroke" if stroke_prediction[0] == 1 else "✅ Low risk of stroke"
361
+ if stroke_prediction[0] == 0:
362
+ st.balloons()
363
+ st.success(result)
364
+
365
+ except Exception as e:
366
+ st.error(f"❌ Error: {e}")
367
+
368
+
369
+
370
+
371
+ if selected == 'Data Visualization':
372
+ # st.set_page_config(page_title="Data Visualizer",
373
+ # page_icon="📊", layout="centered")
374
+ st.title(" 📊 Data Visualization")
375
+
376
+ working_dir = os.path.dirname(os.path.abspath(__file__))
377
+
378
+ folder_path = f"{working_dir}/data_csv"
379
+
380
+ files_list = [f for f in os.listdir(folder_path) if f.endswith('.csv')]
381
+
382
+ selected_file = st.selectbox("Select a file", files_list, index=None)
383
+
384
+ if selected_file:
385
+
386
+ file_path = os.path.join(folder_path, selected_file)
387
+
388
+ df = pd.read_csv(file_path)
389
+
390
+ columns = df.columns.tolist()
391
+
392
+ col1, col2 = st.columns(2)
393
+
394
+ with col1:
395
+ st.write("")
396
+ st.write(df.head())
397
+
398
+ with col2:
399
+ x_axis = st.selectbox("Select X-axis", options=columns + ["None"])
400
+ y_axis = st.selectbox("Select Y-axis", options=columns + ["None"])
401
+
402
+ plot_list = ["Line Plot", "Bar Plot", "Scatter Plot", "Histogram", "Box Plot", "Distribution Plot", "Count Plot", "Pair Plot"]
403
+
404
+ selected_plot = st.selectbox("Select a plot", options=plot_list, index=None)
405
+
406
+ # st.write(x_axis)
407
+ # st.write(y_axis)
408
+ # st.write(selected_plot)
409
+
410
+ if st.button("Generate Plot"):
411
+
412
+ fig, ax = plt.subplots(figsize=(6,4))
413
+
414
+ if selected_plot == "Line Plot":
415
+ sns.lineplot(x=x_axis, y=y_axis, data=df, ax=ax)
416
+
417
+ elif selected_plot == "Bar Plot":
418
+ sns.barplot(x=x_axis, y=y_axis, data=df, ax=ax)
419
+
420
+ elif selected_plot == "Scatter Plot":
421
+ sns.scatterplot(x=x_axis, y=y_axis, data=df, ax=ax)
422
+
423
+ elif selected_plot == "Histogram":
424
+ sns.histplot(df[x_axis], ax=ax)
425
+
426
+ elif selected_plot == "Box Plot":
427
+ sns.boxplot(x=x_axis, y=y_axis, data=df, ax=ax)
428
+
429
+ elif selected_plot == "Distribution Plot":
430
+ sns.kdeplot(df[x_axis], ax=ax)
431
+
432
+ elif selected_plot == "Count Plot":
433
+ sns.countplot(x=x_axis, data=df, ax=ax)
434
+
435
+ elif selected_plot == "Pair Plot":
436
+ sns.pairplot(df, ax=ax)
437
+
438
+ ax.tick_params(axis="x", labelsize=10)
439
+ ax.tick_params(axis="y", labelsize=10)
440
+
441
+ plt.title(f"{selected_plot} of {x_axis} vs {y_axis}", fontsize=12)
442
+ plt.xlabel(x_axis, fontsize=10)
443
+ plt.ylabel(y_axis, fontsize=10)
444
+
445
+ st.pyplot(fig)
446
+
447
+
448
+ if selected == 'Medical Consultant':
449
+ st.title("🩺 Medical Consultant Chatbot")
450
+ st.markdown("### Discuss Your Health Concerns with Our AI-powered Chatbot")
451
+ st.write("Ask about **Diabetes, Asthma, Stroke, Cardiovascular Disease, or Mental Health.**")
452
+
453
+ genai.configure(api_key="AIzaSyAwyi9c5OdvLoWrv5lFi1jZDEYwuprQAKE")
454
+
455
+ # Custom Styling
456
+ st.markdown("""
457
+ <style>
458
+ .prompt-box {
459
+ background-color: #000000;
460
+ padding: 12px;
461
+ border-radius: 8px;
462
+ font-size: 14px;
463
+ font-family: sans-serif;
464
+ margin-bottom: 10px;
465
+ border: 1px solid #dee2e6;
466
+ text-align: center;
467
+ }
468
+ </style>
469
+ """, unsafe_allow_html=True)
470
+
471
+ st.markdown("#### 💡 Common Health Queries")
472
+
473
+ prompt_options = [
474
+ ("Diabetes – Diet", "What foods should I eat if I have diabetes?"),
475
+ ("Diabetes – Exercise", "What type of workouts help control blood sugar levels?"),
476
+ ("Asthma – Triggers", "What are common asthma triggers?"),
477
+ ("Asthma – Treatment", "What are the best medications for asthma?"),
478
+ ("Stroke – Symptoms", "What are the early warning signs of a stroke?"),
479
+ ("Stroke – Prevention", "How can I reduce my risk of stroke?"),
480
+ ("Cardiovascular – Heart Health", "How can I reduce my risk of heart disease?"),
481
+ ("Cardiovascular – Blood Pressure", "What lifestyle changes can lower high blood pressure?"),
482
+ ("Mental Health – Stress Management", "How can I manage stress effectively?"),
483
+ ("Mental Health – Sleep Disorders", "What are the causes and treatments for sleep disorders?")
484
+ ]
485
+
486
+ # Display prompts in two columns (2 prompts per row)
487
+ cols = st.columns(2)
488
+ for i in range(0, len(prompt_options), 2):
489
+ with cols[0]:
490
+ if i < len(prompt_options):
491
+ label, prompt = prompt_options[i]
492
+ st.markdown(f"""<div class="prompt-box"><strong>{label}</strong><br>{prompt}</div>""", unsafe_allow_html=True)
493
+
494
+ with cols[1]:
495
+ if i+1 < len(prompt_options):
496
+ label, prompt = prompt_options[i+1]
497
+ st.markdown(f"""<div class="prompt-box"><strong>{label}</strong><br>{prompt}</div>""", unsafe_allow_html=True)
498
+
499
+ # Initialize chat history if not present
500
+ if "chat_history" not in st.session_state:
501
+ st.session_state.chat_history = []
502
+
503
+ # Display previous chat history
504
+ for message in st.session_state.chat_history:
505
+ with st.chat_message(message["role"]):
506
+ st.markdown(message["content"])
507
+
508
+ # User input field
509
+ user_prompt = st.chat_input("Ask about Diabetes, Asthma, Stroke, Cardiovascular Disease, or Mental Health...")
510
+
511
+ # List of allowed topics
512
+ allowed_keywords = ["diabetes", "asthma", "stroke", "cardiovascular", "heart", "blood pressure",
513
+ "mental health", "depression", "stress", "cholesterol", "sleep disorders"]
514
+
515
+ if user_prompt:
516
+ # Display user message
517
+ st.chat_message("user").markdown(user_prompt)
518
+ st.session_state.chat_history.append({"role": "user", "content": user_prompt})
519
+
520
+ # Restriction: Only process if related to health topics
521
+ if any(keyword in user_prompt.lower() for keyword in allowed_keywords):
522
+ model = genai.GenerativeModel("gemini-2.0-flash")
523
+ response = model.generate_content(user_prompt)
524
+
525
+ if response and hasattr(response, "text"):
526
+ assistant_response = response.text
527
+ else:
528
+ assistant_response = "I'm sorry, I couldn't generate a response."
529
+
530
+ st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
531
+
532
+ # Display assistant's response
533
+ with st.chat_message("assistant"):
534
+ st.markdown(assistant_response)
535
+ else:
536
+ # Restriction message
537
+ restriction_msg = "**⚠️ This chatbot only responds to health-related topics.**\nPlease ask about Diabetes, Asthma, Stroke, Cardiovascular Disease, or Mental Health."
538
+ st.session_state.chat_history.append({"role": "assistant", "content": restriction_msg})
539
+
540
+ with st.chat_message("assistant"):
541
+ st.markdown(restriction_msg)
542
+
543
+
544
+ # if selected == 'Checkbox-to-disease-predictor':
545
+ # # Load transformer model
546
+ # classifier = pipeline("zero-shot-classification", model="microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract")
547
+ # # Use a pipeline as a high-level helper
548
+
549
+ # # from transformers import pipeline
550
+
551
+ # # pipe = pipeline("fill-mask", model="microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext")
552
+
553
+
554
+ # # Define symptoms for each disease
555
+ # diseases = {
556
+ # "Diabetes": ["Frequent urination", "Increased thirst", "Unexplained weight loss", "Fatigue", "Blurred vision"],
557
+ # "Hypertension": ["Headache", "Dizziness", "Chest pain", "Shortness of breath", "Nosebleeds"],
558
+ # "Obesity": ["Excess body fat", "Breathlessness", "Joint pain", "Increased sweating", "Low energy levels"],
559
+ # "Cardiovascular Disease": ["Chest pain", "Shortness of breath", "Dizziness", "Irregular heartbeat", "Fatigue"],
560
+ # "COPD": ["Chronic cough", "Shortness of breath", "Wheezing", "Chest tightness", "Frequent respiratory infections"],
561
+ # "Liver Disease": ["Jaundice", "Abdominal pain", "Swelling in legs", "Chronic fatigue", "Nausea"],
562
+ # "Kidney Disease": ["Swelling in legs", "Fatigue", "Loss of appetite", "Changes in urination", "Muscle cramps"],
563
+ # "Metabolic Syndrome": ["High blood sugar", "High blood pressure", "Increased waist size", "High cholesterol", "Fatigue"],
564
+ # "Osteoarthritis": ["Joint pain", "Stiffness", "Swelling", "Reduced flexibility", "Bone spurs"],
565
+ # "Gastroesophageal Reflux Disease": ["Heartburn", "Acid reflux", "Difficulty swallowing", "Chronic cough", "Sore throat"],
566
+ # "Depression": ["Persistent sadness", "Loss of interest", "Sleep disturbances", "Fatigue", "Difficulty concentrating"],
567
+ # "Sleep Apnea": ["Loud snoring", "Pauses in breathing", "Daytime drowsiness", "Morning headaches", "Irritability"],
568
+ # }
569
+
570
+ # # Streamlit UI
571
+ # st.title("🩺 Hybrid Symptom Checker")
572
+ # st.write("Select your symptoms and get AI-powered predictions!")
573
+
574
+ # selected_symptoms = []
575
+
576
+ # # Create symptom selection with markdown separation and three columns
577
+ # disease_keys = list(diseases.keys())
578
+
579
+ # for i in range(0, len(disease_keys), 3):
580
+ # cols = st.columns(3)
581
+ # for j in range(3):
582
+ # if i + j < len(disease_keys):
583
+ # disease = disease_keys[i + j]
584
+ # with cols[j]:
585
+ # st.markdown(f"### {disease}")
586
+ # for symptom in diseases[disease]:
587
+ # if st.checkbox(symptom, key=f"{disease}_{symptom}"):
588
+ # selected_symptoms.append(symptom)
589
+
590
+ # if st.button("🔍 Predict Disease"):
591
+ # if selected_symptoms:
592
+ # user_input = ", ".join(selected_symptoms) # Convert symptoms to text
593
+
594
+ # # 1️⃣ Custom Symptom Matching Approach
595
+ # disease_scores = {disease: 0 for disease in diseases.keys()}
596
+ # for disease, symptoms in diseases.items():
597
+ # matches = sum(symptom in selected_symptoms for symptom in symptoms)
598
+ # disease_scores[disease] = matches / len(symptoms) # Normalize by symptom count
599
+
600
+ # # Normalize to percentage
601
+ # symptom_match_scores = {d: round(score * 100, 2) for d, score in disease_scores.items()}
602
+
603
+ # # 2️⃣ AI Model Prediction
604
+ # ai_results = classifier(user_input, list(diseases.keys()))
605
+ # ai_scores = {ai_results["labels"][i]: round(ai_results["scores"][i] * 100, 2) for i in range(len(ai_results["labels"]))}
606
+
607
+ # # 3️⃣ Hybrid Score Calculation (Average of Both Scores)
608
+ # final_scores = {}
609
+ # for disease in diseases.keys():
610
+ # symptom_score = symptom_match_scores.get(disease, 0)
611
+ # ai_score = ai_scores.get(disease, 0)
612
+ # final_scores[disease] = round((symptom_score + ai_score) / 2, 2) # Averaging
613
+
614
+ # # Sort by final score
615
+ # sorted_final_scores = sorted(final_scores.items(), key=lambda x: x[1], reverse=True)
616
+
617
+ # # Display results
618
+ # st.write("### 🔬 Possible Conditions (Hybrid Model Prediction):")
619
+ # for disease, score in sorted_final_scores:
620
+ # if score > 0:
621
+ # st.write(f"🩺 {disease}: {score}% match")
622
+ # else:
623
+ # st.write("⚠️ Please select at least one symptom.")
624
+
625
+
626
+ import torch
627
+ from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
628
+
629
+
630
+
631
+ if selected == "Mental-Analysis":
632
+ # Load the Hugging Face model
633
+ model_name = "mental/mental-roberta-base"
634
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
635
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
636
+
637
+ # Sidebar with title and markdown
638
+ st.sidebar.title("🧠 Mental Health Analysis")
639
+ st.sidebar.markdown("""
640
+ Analyze mental health symptoms using a **pre-trained AI model**.
641
+ This tool predicts **Depression and Anxiety** based on text input.
642
+ """)
643
+
644
+ # Main content
645
+ st.title("🔬 Mental Health Text Analysis")
646
+ st.markdown("Enter a description of your mental state, and the AI will predict possible conditions.")
647
+
648
+ # User input
649
+ user_input = st.text_area("Describe your symptoms (e.g., 'I feel hopeless and anxious all the time.'):")
650
+
651
+ if st.button("Analyze"):
652
+ if user_input:
653
+ # Tokenize input
654
+ inputs = tokenizer(user_input, return_tensors="pt", truncation=True, padding=True)
655
+
656
+ # Get raw logits from the model
657
+ with torch.no_grad():
658
+ outputs = model(**inputs)
659
+ logits = outputs.logits
660
+
661
+ # Apply sigmoid activation to get independent probabilities
662
+ probs = torch.sigmoid(logits).squeeze().tolist()
663
+
664
+ # Map to labels
665
+ label_mapping = {
666
+ 0: "Depression",
667
+ 1: "Anxiety"
668
+ }
669
+ predictions = {label_mapping[i]: round(probs[i] * 100, 2) for i in range(len(probs))}
670
+
671
+ # Display predictions
672
+ st.write("### Predictions:")
673
+ for label, score in predictions.items():
674
+ st.write(f"🩺 **{label}**: {score}% confidence")
675
+
676
+ # Sort for better visualization
677
+ sorted_labels = sorted(predictions.keys(), key=lambda x: predictions[x], reverse=True)
678
+ sorted_scores = [predictions[label] for label in sorted_labels]
679
+
680
+ # Plot using Seaborn
681
+ fig, ax = plt.subplots(figsize=(4, 2.5)) # Compact size
682
+ sns.barplot(x=sorted_scores, y=sorted_labels, palette="coolwarm", ax=ax)
683
+
684
+ # Labels & title
685
+ ax.set_xlabel("Risk Probability (%)")
686
+ ax.set_title("Mental Health Risk Assessment")
687
+ ax.set_xlim(0, 100)
688
+
689
+ # Add percentages inside bars
690
+ for i, (score, label) in enumerate(zip(sorted_scores, sorted_labels)):
691
+ ax.text(score - 5, i, f"{score}%", va='center', ha='right', color='white', fontsize=10, fontweight='bold')
692
+
693
+ # Display the chart in a single column
694
+ st.pyplot(fig)
695
+
696
+
697
+ if selected == 'Sleep Health Analysis':
698
+ st.title("🌙 Sleep Health Analysis")
699
+ st.image("https://cdn-icons-png.flaticon.com/512/1205/1205526.png", width=100)
700
+
701
+ st.markdown("""
702
+ This model predicts the likelihood of **Sleep Disorders** based on various health factors.
703
+ Enter your details and click **"Sleep Health Test Result"** to get the prediction.
704
+ """)
705
+
706
+ # Load models
707
+ try:
708
+ sleep_model = pickle.load(open('sleep_health/svc_model.pkl', 'rb'))
709
+ scaler = pickle.load(open('sleep_health/scaler.pkl', 'rb'))
710
+ label_encoder = pickle.load(open('sleep_health/label_encoders.pkl', 'rb'))
711
+ except FileNotFoundError:
712
+ st.error("Error: Model files not found. Please upload the model files.")
713
+ st.stop()
714
+
715
+ # Input fields for user data
716
+ col1, col2 = st.columns(2)
717
+
718
+ with col1:
719
+ gender = st.selectbox('Gender', ['Male', 'Female'], key='gender_sleep')
720
+ age = st.slider("Age", min_value=27, max_value=59, value=35,
721
+ help="Age range in dataset: 27-59 years", key='age_sleep')
722
+ occupation = st.selectbox("Occupation",
723
+ ['Software Engineer', 'Doctor', 'Sales Representative', 'Teacher', 'Business',
724
+ 'Scientist', 'Accountant', 'Engineer'], key='occupation_sleep')
725
+ sleep_duration = st.slider("Sleep Duration (hours)",
726
+ min_value=5.8, max_value=8.5, value=6.5, step=0.1,
727
+ help="Dataset range: 5.8-8.5 hours", key='sleep_duration')
728
+ quality_of_sleep = st.slider('Quality of Sleep',
729
+ min_value=4, max_value=9, value=6,
730
+ help="Higher is better (4-9 scale)", key='quality_sleep')
731
+ physical_activity_level = st.slider('Physical Activity Level (minutes/day)',
732
+ min_value=30, max_value=90, value=45,
733
+ help="Physical activity in minutes per day", key='activity_sleep')
734
+
735
+ with col2:
736
+ stress_level = st.slider('Stress Level',
737
+ min_value=3, max_value=8, value=6,
738
+ help="Higher values indicate higher stress (3-8 scale)", key='stress_sleep')
739
+ bmi_category = st.selectbox("BMI Category",
740
+ ["Normal", "Overweight", "Obese"], key='bmi_sleep')
741
+
742
+ # For blood pressure, let's use two separate inputs for systolic/diastolic
743
+ col2a, col2b = st.columns(2)
744
+ with col2a:
745
+ systolic = st.slider("Blood Pressure (Systolic)",
746
+ min_value=110, max_value=140, value=125, key='bp_sys_sleep')
747
+ with col2b:
748
+ diastolic = st.slider("Diastolic",
749
+ min_value=70, max_value=95, value=80, key='bp_dia_sleep')
750
+
751
+ blood_pressure = f"{systolic}/{diastolic}"
752
+
753
+ heart_rate = st.slider("Heart Rate (bpm)",
754
+ min_value=65, max_value=86, value=75,
755
+ help="Normal range: 60-100 bpm", key='hr_sleep')
756
+ daily_steps = st.slider("Daily Steps",
757
+ min_value=3000, max_value=10000, value=6000, step=500,
758
+ help="Recommended: 7,000-10,000 steps/day", key='steps_sleep')
759
+
760
+ # Create a button to trigger prediction
761
+ if st.button('Sleep Health Test Result', key='sleep_test_button'):
762
+ try:
763
+ # Prepare input data
764
+ input_data = {
765
+ 'Gender': gender,
766
+ 'Age': age,
767
+ 'Occupation': occupation,
768
+ 'Sleep Duration': sleep_duration,
769
+ 'Quality of Sleep': quality_of_sleep,
770
+ 'Physical Activity Level': physical_activity_level,
771
+ 'Stress Level': stress_level,
772
+ 'BMI Category': bmi_category,
773
+ 'Blood Pressure': blood_pressure,
774
+ 'Heart Rate': heart_rate,
775
+ 'Daily Steps': daily_steps
776
+ }
777
+
778
+ # Process and predict
779
+ df = pd.DataFrame([input_data])
780
+
781
+ # Apply label encoding to categorical features
782
+ for col, encoder in label_encoder.items():
783
+ if col in df.columns:
784
+ df[col] = encoder.transform([df[col].iloc[0]])[0]
785
+
786
+ # Feature Engineering and Preprocessing
787
+ columns_to_drop = ["Physical Activity Level", "Person ID"]
788
+ for col in columns_to_drop:
789
+ if col in df.columns:
790
+ df = df.drop(columns=[col])
791
+
792
+ # Create dummy variables with the correct column names expected by the model
793
+ df = pd.get_dummies(df)
794
+
795
+ # Get the expected feature names from the model
796
+ # You might need to store these feature names during training
797
+ expected_features = [
798
+ 'Age', 'Sleep Duration', 'Quality of Sleep', 'Stress Level',
799
+ 'Heart Rate', 'Daily Steps', 'Gender_Female', 'Gender_Male',
800
+ 'Occupation_Accountant', 'Occupation_Business', 'Occupation_Doctor',
801
+ 'Occupation_Engineer', 'Occupation_Sales Representative',
802
+ 'Occupation_Scientist', 'Occupation_Software Engineer', 'Occupation_Teacher',
803
+ 'BMI Category_Normal', 'BMI Category_Obese', 'BMI Category_Overweight',
804
+ 'Blood Pressure_110/70', 'Blood Pressure_120/80', 'Blood Pressure_125/80',
805
+ 'Blood Pressure_130/85', 'Blood Pressure_140/90'
806
+ ]
807
+
808
+ # Create a DataFrame with expected features filled with zeros
809
+ prediction_df = pd.DataFrame(0, index=[0], columns=expected_features)
810
+
811
+ # Fill in the values from our current DataFrame
812
+ for col in df.columns:
813
+ if col in prediction_df.columns:
814
+ prediction_df[col] = df[col].values
815
+
816
+ # Scale with proper error handling
817
+ with st.spinner("⏳ Predicting... Please wait..."):
818
+ time.sleep(2)
819
+ # Use the properly formatted DataFrame
820
+ prediction = sleep_model.predict(prediction_df)
821
+
822
+ # Display result
823
+ result = "🛑 High risk of sleep disorder" if prediction[0] == 1 else "✅ Low risk of sleep disorder"
824
+ if prediction[0] == 0:
825
+ st.balloons()
826
+ st.success(result)
827
+
828
+ # Show risk factors based on input
829
+ st.subheader("Risk Factor Analysis")
830
+ risk_factors = []
831
+
832
+ if sleep_duration < 6.0:
833
+ risk_factors.append("⚠️ Low sleep duration (less than 6 hours)")
834
+ if quality_of_sleep < 6:
835
+ risk_factors.append("⚠️ Poor sleep quality")
836
+ if stress_level > 6:
837
+ risk_factors.append("⚠️ High stress levels")
838
+ if bmi_category in ["Overweight", "Obese"]:
839
+ risk_factors.append(f"⚠️ {bmi_category} BMI category")
840
+ if int(systolic) > 130 or int(diastolic) > 85:
841
+ risk_factors.append("⚠️ Elevated blood pressure")
842
+ if heart_rate > 80:
843
+ risk_factors.append("⚠️ Elevated heart rate")
844
+ if daily_steps < 5000:
845
+ risk_factors.append("⚠️ Low daily activity (steps)")
846
+
847
+ if risk_factors:
848
+ st.markdown("##### Potential Risk Factors:")
849
+ for factor in risk_factors:
850
+ st.markdown(factor)
851
+ else:
852
+ st.markdown("✅ No significant risk factors identified.")
853
+
854
+ except Exception as e:
855
+ st.error(f"❌ Error: {e}")
856
+
857
+
858
+
859
+
860
+ if selected=='Hypertension Prediction':
861
+ st.title("Hypertension Risk Prediction App")
862
+ st.markdown("This application uses an Extra Trees Classifier model to predict hypertension risk based on patient health data.")
863
+
864
+ # Load the model and scaler
865
+ try:
866
+ hypertension_model = pickle.load(open('hypertension\extratrees_model.pkl', 'rb'))
867
+ hypertension_scaler = pickle.load(open('hypertension\scaler.pkl', 'rb'))
868
+ st.success("Model and scaler loaded successfully!")
869
+ except Exception as e:
870
+ st.error(f"Error loading model or scaler: {e}")
871
+ st.info("Please check that model and scaler files are in the correct location.")
872
+ st.warning("Expected path: 'hypertension/extratrees_model.pkl' and 'hypertension/scaler.pkl'")
873
+
874
+ # Define input section
875
+ st.subheader("Patient Information")
876
+
877
+ # Create two columns for input layout
878
+ col1, col2 = st.columns(2)
879
+
880
+ with col1:
881
+ male = st.radio("Gender", options=[0, 1], format_func=lambda x: "Female" if x == 0 else "Male")
882
+ age = st.slider("Age", min_value=32, max_value=70, value=49, help="Patient's age (32-70 years)")
883
+ cigs_per_day = st.slider("Cigarettes Per Day", min_value=0.0, max_value=70.0, value=0.0, step=1.0)
884
+ bp_meds = st.radio("On Blood Pressure Medication", options=[0.0, 1.0], format_func=lambda x: "No" if x == 0.0 else "Yes")
885
+ tot_chol = st.slider("Total Cholesterol", min_value=107.0, max_value=500.0, value=234.0, step=1.0, help="mg/dL")
886
+
887
+ with col2:
888
+ sys_bp = st.slider("Systolic Blood Pressure", min_value=83.5, max_value=295.0, value=128.0, step=0.5, help="mmHg")
889
+ dia_bp = st.slider("Diastolic Blood Pressure", min_value=48.0, max_value=142.5, value=82.0, step=0.5, help="mmHg")
890
+ bmi = st.slider("BMI", min_value=15.54, max_value=56.80, value=25.40, step=0.01)
891
+ heart_rate = st.slider("Heart Rate", min_value=44.0, max_value=143.0, value=75.0, step=1.0, help="beats per minute")
892
+ glucose = st.slider("Glucose", min_value=40.0, max_value=394.0, value=78.0, step=1.0, help="mg/dL")
893
+
894
+ # Prediction button
895
+ predict_button = st.button("Predict Hypertension Risk")
896
+
897
+ if predict_button:
898
+ # Create input dataframe
899
+ input_data = pd.DataFrame({
900
+ 'male': [male],
901
+ 'age': [age],
902
+ 'cigsPerDay': [cigs_per_day],
903
+ 'BPMeds': [bp_meds],
904
+ 'totChol': [tot_chol],
905
+ 'sysBP': [sys_bp],
906
+ 'diaBP': [dia_bp],
907
+ 'BMI': [bmi],
908
+ 'heartRate': [heart_rate],
909
+ 'glucose': [glucose]
910
+ })
911
+
912
+ # Display input data
913
+ st.subheader("Input Data:")
914
+ st.dataframe(input_data)
915
+
916
+ # Identify numerical columns to scale
917
+ num_cols = ['age', 'cigsPerDay', 'totChol', 'sysBP', 'diaBP', 'BMI', 'heartRate', 'glucose']
918
+
919
+ try:
920
+ # Scale the numerical features
921
+ input_data[num_cols] = hypertension_scaler.transform(input_data[num_cols])
922
+
923
+ # Make prediction
924
+ prediction = hypertension_model.predict(input_data)[0]
925
+ prediction_prob = hypertension_model.predict_proba(input_data)[0]
926
+
927
+ # Display prediction results
928
+ st.subheader("Prediction Result:")
929
+
930
+ # Create columns for results
931
+ res_col1, res_col2 = st.columns(2)
932
+
933
+ with res_col1:
934
+ if prediction == 0:
935
+ st.success("✅ Low Risk of Hypertension")
936
+ else:
937
+ st.error("🚨 High Risk of Hypertension")
938
+
939
+ with res_col2:
940
+ # Visualization
941
+ st.write(f"Probability of Low Risk: {prediction_prob[0]:.2f}")
942
+ st.write(f"Probability of High Risk: {prediction_prob[1]:.2f}")
943
+
944
+ # Add progress bar
945
+ st.progress(float(prediction_prob[1]))
946
+
947
+ except Exception as e:
948
+ st.error(f"Error during prediction: {e}")
949
+ # st.info("Please check that all inputs are valid and within the expected ranges.")
asthama/asthma_dataset.csv ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Patient_ID,Age,Gender,Smoking_Status,Asthma_Diagnosis,Medication,Peak_Flow
2
+ 1,26,Female,Non-Smoker,Yes,Inhaler,175
3
+ 2,52,Female,Ex-Smoker,No,None,156
4
+ 3,56,Female,Ex-Smoker,Yes,Inhaler,236
5
+ 4,55,Male,Current Smoker,Yes,Controller Medication,378
6
+ 5,43,Female,Current Smoker,No,None,159
7
+ 6,23,Male,Non-Smoker,No,None,376
8
+ 7,33,Female,Current Smoker,No,None,296
9
+ 8,20,Male,Current Smoker,Yes,Controller Medication,322
10
+ 9,36,Male,Current Smoker,No,None,175
11
+ 10,27,Male,Ex-Smoker,No,None,264
12
+ 11,34,Female,Ex-Smoker,No,None,240
13
+ 12,43,Male,Current Smoker,No,None,354
14
+ 13,51,Female,Non-Smoker,Yes,Inhaler,171
15
+ 14,54,Male,Non-Smoker,Yes,Inhaler,327
16
+ 15,22,Female,Current Smoker,Yes,Inhaler,304
17
+ 16,53,Female,Non-Smoker,Yes,Controller Medication,336
18
+ 17,39,Female,Current Smoker,Yes,Controller Medication,307
19
+ 18,34,Male,Non-Smoker,Yes,Controller Medication,372
20
+ 19,51,Male,Current Smoker,No,None,239
21
+ 20,37,Male,Non-Smoker,Yes,Controller Medication,309
22
+ 21,52,Female,Ex-Smoker,No,None,323
23
+ 22,24,Female,Non-Smoker,No,None,160
24
+ 23,56,Female,Ex-Smoker,Yes,Controller Medication,286
25
+ 24,23,Female,Current Smoker,Yes,Inhaler,282
26
+ 25,58,Male,Non-Smoker,No,None,248
27
+ 26,27,Male,Ex-Smoker,No,None,325
28
+ 27,41,Male,Non-Smoker,No,None,233
29
+ 28,27,Male,Current Smoker,No,None,346
30
+ 29,63,Male,Current Smoker,No,None,379
31
+ 30,25,Female,Current Smoker,Yes,Inhaler,207
32
+ 31,42,Male,Non-Smoker,Yes,Inhaler,168
33
+ 32,18,Female,Non-Smoker,No,None,200
34
+ 33,22,Female,Ex-Smoker,Yes,Inhaler,323
35
+ 34,54,Male,Non-Smoker,Yes,Controller Medication,386
36
+ 35,22,Female,Ex-Smoker,Yes,Controller Medication,257
37
+ 36,34,Female,Current Smoker,Yes,Controller Medication,349
38
+ 37,20,Male,Current Smoker,No,None,273
39
+ 38,43,Male,Current Smoker,No,None,260
40
+ 39,19,Male,Non-Smoker,No,None,249
41
+ 40,65,Female,Non-Smoker,Yes,Controller Medication,203
42
+ 41,22,Female,Current Smoker,No,None,384
43
+ 42,58,Female,Current Smoker,Yes,Inhaler,253
44
+ 43,59,Male,Current Smoker,Yes,Inhaler,383
45
+ 44,54,Male,Ex-Smoker,Yes,Controller Medication,202
46
+ 45,57,Female,Ex-Smoker,Yes,Inhaler,310
47
+ 46,45,Male,Non-Smoker,No,None,287
48
+ 47,62,Female,Ex-Smoker,No,None,348
49
+ 48,39,Male,Non-Smoker,Yes,Controller Medication,230
50
+ 49,43,Female,Non-Smoker,No,None,388
51
+ 50,20,Male,Current Smoker,No,None,331
52
+ 51,59,Female,Non-Smoker,No,None,288
53
+ 52,21,Female,Non-Smoker,No,None,378
54
+ 53,58,Male,Current Smoker,No,None,284
55
+ 54,23,Male,Current Smoker,Yes,Controller Medication,205
56
+ 55,48,Male,Current Smoker,No,None,352
57
+ 56,54,Female,Ex-Smoker,Yes,Inhaler,383
58
+ 57,47,Male,Ex-Smoker,No,None,267
59
+ 58,50,Male,Non-Smoker,No,None,269
60
+ 59,64,Female,Ex-Smoker,No,None,398
61
+ 60,52,Female,Ex-Smoker,No,None,259
62
+ 61,38,Male,Ex-Smoker,No,None,307
63
+ 62,28,Male,Ex-Smoker,No,None,258
64
+ 63,46,Male,Non-Smoker,Yes,Controller Medication,194
65
+ 64,49,Male,Ex-Smoker,No,None,157
66
+ 65,60,Male,Ex-Smoker,Yes,Inhaler,207
67
+ 66,47,Male,Current Smoker,Yes,Controller Medication,382
68
+ 67,24,Female,Current Smoker,Yes,Controller Medication,151
69
+ 68,43,Male,Non-Smoker,No,None,321
70
+ 69,41,Female,Non-Smoker,Yes,Controller Medication,260
71
+ 70,49,Male,Ex-Smoker,No,None,284
72
+ 71,50,Female,Non-Smoker,Yes,Controller Medication,176
73
+ 72,20,Male,Non-Smoker,No,None,248
74
+ 73,58,Female,Non-Smoker,Yes,Inhaler,270
75
+ 74,28,Female,Current Smoker,Yes,Controller Medication,389
76
+ 75,39,Male,Non-Smoker,No,None,357
77
+ 76,65,Male,Non-Smoker,Yes,Inhaler,280
78
+ 77,43,Female,Ex-Smoker,Yes,Inhaler,397
79
+ 78,32,Female,Current Smoker,Yes,Controller Medication,200
80
+ 79,63,Female,Non-Smoker,Yes,Controller Medication,212
81
+ 80,58,Female,Ex-Smoker,No,None,300
82
+ 81,22,Female,Ex-Smoker,Yes,Controller Medication,294
83
+ 82,37,Male,Ex-Smoker,Yes,Inhaler,358
84
+ 83,52,Female,Ex-Smoker,Yes,Inhaler,198
85
+ 84,51,Male,Current Smoker,Yes,Controller Medication,263
86
+ 85,25,Female,Current Smoker,Yes,Controller Medication,200
87
+ 86,30,Male,Ex-Smoker,No,None,159
88
+ 87,53,Male,Ex-Smoker,No,None,152
89
+ 88,38,Female,Ex-Smoker,No,None,267
90
+ 89,45,Male,Current Smoker,Yes,Inhaler,237
91
+ 90,38,Female,Ex-Smoker,No,None,286
92
+ 91,23,Male,Non-Smoker,No,None,363
93
+ 92,36,Female,Non-Smoker,No,None,380
94
+ 93,38,Female,Ex-Smoker,Yes,Controller Medication,305
95
+ 94,34,Male,Current Smoker,No,None,218
96
+ 95,29,Female,Non-Smoker,No,None,185
97
+ 96,23,Male,Non-Smoker,No,None,181
98
+ 97,36,Male,Ex-Smoker,No,None,336
99
+ 98,46,Female,Non-Smoker,Yes,Inhaler,262
100
+ 99,34,Female,Non-Smoker,Yes,Inhaler,188
101
+ 100,23,Male,Ex-Smoker,Yes,Inhaler,384
102
+ 101,45,Male,Ex-Smoker,Yes,Controller Medication,210
103
+ 102,33,Male,Current Smoker,No,None,338
104
+ 103,27,Male,Non-Smoker,No,None,294
105
+ 104,34,Female,Current Smoker,No,None,301
106
+ 105,27,Male,Ex-Smoker,No,None,322
107
+ 106,47,Female,Non-Smoker,Yes,Controller Medication,263
108
+ 107,21,Male,Ex-Smoker,Yes,Inhaler,308
109
+ 108,44,Female,Non-Smoker,Yes,Inhaler,377
110
+ 109,44,Male,Non-Smoker,Yes,Inhaler,289
111
+ 110,52,Male,Ex-Smoker,No,None,197
112
+ 111,26,Male,Current Smoker,Yes,Inhaler,337
113
+ 112,48,Male,Current Smoker,Yes,Controller Medication,346
114
+ 113,27,Male,Current Smoker,Yes,Controller Medication,385
115
+ 114,24,Female,Non-Smoker,No,None,281
116
+ 115,34,Female,Ex-Smoker,No,None,358
117
+ 116,49,Male,Current Smoker,No,None,212
118
+ 117,65,Male,Non-Smoker,No,None,268
119
+ 118,30,Female,Non-Smoker,Yes,Inhaler,372
120
+ 119,62,Female,Non-Smoker,No,None,377
121
+ 120,45,Female,Current Smoker,Yes,Controller Medication,383
122
+ 121,58,Female,Non-Smoker,Yes,Controller Medication,316
123
+ 122,48,Male,Non-Smoker,Yes,Inhaler,245
124
+ 123,63,Female,Ex-Smoker,Yes,Inhaler,162
125
+ 124,48,Male,Ex-Smoker,No,None,348
126
+ 125,51,Male,Non-Smoker,Yes,Inhaler,232
127
+ 126,26,Female,Current Smoker,No,None,184
128
+ 127,23,Female,Current Smoker,No,None,182
129
+ 128,27,Female,Ex-Smoker,No,None,215
130
+ 129,43,Female,Non-Smoker,No,None,276
131
+ 130,32,Female,Current Smoker,Yes,Inhaler,357
132
+ 131,23,Female,Non-Smoker,Yes,Controller Medication,390
133
+ 132,29,Female,Ex-Smoker,Yes,Controller Medication,295
134
+ 133,29,Male,Non-Smoker,No,None,376
135
+ 134,30,Female,Non-Smoker,No,None,261
136
+ 135,24,Male,Ex-Smoker,No,None,254
137
+ 136,27,Female,Current Smoker,No,None,226
138
+ 137,52,Male,Current Smoker,No,None,363
139
+ 138,34,Female,Current Smoker,No,None,381
140
+ 139,29,Female,Current Smoker,Yes,Controller Medication,162
141
+ 140,52,Female,Non-Smoker,Yes,Controller Medication,207
142
+ 141,24,Female,Non-Smoker,Yes,Controller Medication,280
143
+ 142,41,Male,Current Smoker,Yes,Controller Medication,150
144
+ 143,65,Male,Current Smoker,Yes,Inhaler,178
145
+ 144,33,Male,Ex-Smoker,No,None,290
146
+ 145,21,Male,Current Smoker,Yes,Controller Medication,376
147
+ 146,36,Male,Current Smoker,No,None,176
148
+ 147,59,Female,Ex-Smoker,Yes,Inhaler,392
149
+ 148,27,Male,Current Smoker,Yes,Inhaler,224
150
+ 149,46,Male,Non-Smoker,No,None,192
151
+ 150,38,Female,Non-Smoker,Yes,Inhaler,314
152
+ 151,62,Female,Current Smoker,Yes,Controller Medication,347
153
+ 152,30,Male,Ex-Smoker,No,None,203
154
+ 153,31,Female,Non-Smoker,No,None,351
155
+ 154,25,Female,Current Smoker,Yes,Inhaler,304
156
+ 155,45,Female,Current Smoker,Yes,Inhaler,181
157
+ 156,27,Female,Non-Smoker,Yes,Controller Medication,159
158
+ 157,42,Male,Ex-Smoker,No,None,302
159
+ 158,29,Male,Non-Smoker,No,None,332
160
+ 159,18,Male,Ex-Smoker,Yes,Inhaler,183
161
+ 160,18,Male,Ex-Smoker,Yes,Inhaler,375
162
+ 161,26,Female,Non-Smoker,No,None,351
163
+ 162,44,Female,Current Smoker,Yes,Controller Medication,234
164
+ 163,45,Male,Non-Smoker,No,None,400
165
+ 164,49,Female,Ex-Smoker,Yes,Controller Medication,327
166
+ 165,42,Female,Non-Smoker,Yes,Controller Medication,274
167
+ 166,59,Female,Ex-Smoker,No,None,178
168
+ 167,28,Female,Ex-Smoker,No,None,278
169
+ 168,34,Female,Current Smoker,No,None,334
170
+ 169,64,Male,Current Smoker,No,None,154
171
+ 170,41,Female,Current Smoker,No,None,253
172
+ 171,59,Female,Non-Smoker,Yes,Inhaler,274
173
+ 172,38,Male,Ex-Smoker,Yes,Controller Medication,364
174
+ 173,41,Female,Non-Smoker,No,None,199
175
+ 174,46,Female,Current Smoker,Yes,Inhaler,251
176
+ 175,37,Female,Ex-Smoker,Yes,Inhaler,248
177
+ 176,41,Female,Ex-Smoker,No,None,400
178
+ 177,61,Male,Non-Smoker,Yes,Controller Medication,175
179
+ 178,41,Female,Ex-Smoker,No,None,169
180
+ 179,21,Male,Ex-Smoker,No,None,377
181
+ 180,25,Female,Current Smoker,Yes,Controller Medication,382
182
+ 181,33,Female,Current Smoker,Yes,Inhaler,304
183
+ 182,27,Male,Non-Smoker,Yes,Controller Medication,230
184
+ 183,41,Female,Current Smoker,Yes,Controller Medication,375
185
+ 184,39,Female,Ex-Smoker,Yes,Controller Medication,245
186
+ 185,22,Male,Current Smoker,No,None,277
187
+ 186,28,Male,Non-Smoker,Yes,Controller Medication,320
188
+ 187,24,Female,Non-Smoker,Yes,Controller Medication,224
189
+ 188,46,Female,Non-Smoker,Yes,Inhaler,389
190
+ 189,29,Male,Ex-Smoker,No,None,383
191
+ 190,55,Male,Current Smoker,Yes,Inhaler,323
192
+ 191,35,Female,Current Smoker,Yes,Controller Medication,329
193
+ 192,29,Male,Current Smoker,No,None,372
194
+ 193,27,Male,Ex-Smoker,Yes,Inhaler,217
195
+ 194,23,Male,Current Smoker,Yes,Inhaler,333
196
+ 195,49,Female,Ex-Smoker,Yes,Inhaler,241
197
+ 196,37,Female,Ex-Smoker,Yes,Controller Medication,261
198
+ 197,26,Female,Non-Smoker,No,None,337
199
+ 198,52,Female,Non-Smoker,Yes,Inhaler,189
200
+ 199,20,Female,Non-Smoker,Yes,Inhaler,373
201
+ 200,29,Female,Non-Smoker,No,None,152
202
+ 201,60,Male,Current Smoker,Yes,Controller Medication,297
203
+ 202,65,Male,Current Smoker,Yes,Inhaler,391
204
+ 203,64,Female,Current Smoker,No,None,232
205
+ 204,20,Male,Non-Smoker,No,None,196
206
+ 205,59,Female,Current Smoker,Yes,Controller Medication,268
207
+ 206,50,Male,Ex-Smoker,No,None,161
208
+ 207,59,Female,Current Smoker,Yes,Controller Medication,248
209
+ 208,20,Female,Current Smoker,Yes,Inhaler,172
210
+ 209,48,Male,Current Smoker,Yes,Inhaler,282
211
+ 210,47,Male,Non-Smoker,No,None,254
212
+ 211,65,Female,Ex-Smoker,No,None,395
213
+ 212,23,Male,Current Smoker,Yes,Inhaler,337
214
+ 213,48,Male,Ex-Smoker,No,None,328
215
+ 214,65,Male,Ex-Smoker,Yes,Inhaler,397
216
+ 215,54,Female,Current Smoker,No,None,334
217
+ 216,38,Male,Ex-Smoker,No,None,220
218
+ 217,24,Female,Current Smoker,No,None,271
219
+ 218,60,Female,Ex-Smoker,No,None,228
220
+ 219,27,Male,Ex-Smoker,Yes,Controller Medication,332
221
+ 220,21,Female,Non-Smoker,No,None,231
222
+ 221,52,Female,Current Smoker,Yes,Controller Medication,175
223
+ 222,44,Male,Non-Smoker,Yes,Controller Medication,378
224
+ 223,22,Female,Current Smoker,No,None,320
225
+ 224,30,Female,Ex-Smoker,No,None,277
226
+ 225,19,Female,Current Smoker,No,None,161
227
+ 226,30,Female,Current Smoker,Yes,Inhaler,264
228
+ 227,61,Female,Non-Smoker,No,None,385
229
+ 228,27,Female,Non-Smoker,No,None,375
230
+ 229,45,Male,Non-Smoker,Yes,Inhaler,398
231
+ 230,64,Male,Non-Smoker,Yes,Controller Medication,154
232
+ 231,29,Female,Non-Smoker,Yes,Controller Medication,296
233
+ 232,18,Male,Non-Smoker,Yes,Controller Medication,176
234
+ 233,56,Female,Ex-Smoker,No,None,301
235
+ 234,30,Male,Ex-Smoker,Yes,Controller Medication,351
236
+ 235,64,Female,Current Smoker,Yes,Controller Medication,218
237
+ 236,26,Female,Current Smoker,No,None,210
238
+ 237,45,Male,Non-Smoker,No,None,372
239
+ 238,45,Female,Non-Smoker,Yes,Inhaler,316
240
+ 239,64,Female,Non-Smoker,Yes,Inhaler,164
241
+ 240,64,Male,Non-Smoker,No,None,328
242
+ 241,58,Female,Current Smoker,Yes,Inhaler,315
243
+ 242,22,Male,Non-Smoker,Yes,Inhaler,204
244
+ 243,39,Male,Non-Smoker,Yes,Controller Medication,257
245
+ 244,45,Female,Non-Smoker,Yes,Inhaler,151
246
+ 245,33,Male,Non-Smoker,Yes,Inhaler,352
247
+ 246,31,Female,Non-Smoker,No,None,226
248
+ 247,63,Female,Current Smoker,No,None,310
249
+ 248,63,Female,Current Smoker,No,None,289
250
+ 249,46,Female,Non-Smoker,Yes,Controller Medication,218
251
+ 250,54,Female,Non-Smoker,Yes,Inhaler,341
252
+ 251,21,Female,Current Smoker,Yes,Controller Medication,217
253
+ 252,32,Male,Current Smoker,No,None,360
254
+ 253,54,Female,Non-Smoker,Yes,Controller Medication,184
255
+ 254,58,Female,Current Smoker,No,None,283
256
+ 255,19,Female,Current Smoker,No,None,213
257
+ 256,42,Male,Current Smoker,No,None,265
258
+ 257,40,Male,Current Smoker,No,None,231
259
+ 258,43,Male,Non-Smoker,Yes,Controller Medication,349
260
+ 259,40,Male,Ex-Smoker,No,None,371
261
+ 260,51,Male,Non-Smoker,Yes,Controller Medication,272
262
+ 261,32,Female,Ex-Smoker,Yes,Inhaler,334
263
+ 262,28,Male,Current Smoker,Yes,Inhaler,170
264
+ 263,59,Male,Ex-Smoker,Yes,Inhaler,212
265
+ 264,47,Female,Current Smoker,Yes,Controller Medication,230
266
+ 265,19,Male,Ex-Smoker,Yes,Controller Medication,384
267
+ 266,32,Female,Ex-Smoker,No,None,177
268
+ 267,43,Female,Ex-Smoker,Yes,Controller Medication,206
269
+ 268,50,Male,Non-Smoker,Yes,Controller Medication,330
270
+ 269,29,Male,Non-Smoker,No,None,225
271
+ 270,29,Female,Non-Smoker,Yes,Controller Medication,260
272
+ 271,48,Male,Current Smoker,Yes,Inhaler,211
273
+ 272,29,Male,Ex-Smoker,No,None,270
274
+ 273,35,Female,Non-Smoker,No,None,260
275
+ 274,51,Male,Ex-Smoker,No,None,332
276
+ 275,65,Female,Non-Smoker,Yes,Controller Medication,229
277
+ 276,63,Female,Ex-Smoker,No,None,381
278
+ 277,31,Female,Non-Smoker,No,None,188
279
+ 278,63,Female,Current Smoker,Yes,Controller Medication,387
280
+ 279,42,Female,Non-Smoker,No,None,178
281
+ 280,44,Male,Ex-Smoker,Yes,Controller Medication,198
282
+ 281,59,Male,Non-Smoker,No,None,187
283
+ 282,18,Male,Non-Smoker,Yes,Inhaler,243
284
+ 283,53,Male,Ex-Smoker,No,None,286
285
+ 284,49,Male,Ex-Smoker,Yes,Controller Medication,300
286
+ 285,20,Male,Current Smoker,Yes,Controller Medication,340
287
+ 286,30,Male,Ex-Smoker,No,None,293
288
+ 287,21,Female,Current Smoker,Yes,Controller Medication,253
289
+ 288,21,Female,Ex-Smoker,Yes,Inhaler,272
290
+ 289,21,Female,Non-Smoker,Yes,Controller Medication,262
291
+ 290,22,Male,Ex-Smoker,No,None,400
292
+ 291,47,Female,Ex-Smoker,No,None,362
293
+ 292,19,Male,Ex-Smoker,Yes,Controller Medication,287
294
+ 293,28,Female,Non-Smoker,Yes,Inhaler,350
295
+ 294,36,Female,Current Smoker,No,None,345
296
+ 295,49,Male,Non-Smoker,Yes,Inhaler,367
297
+ 296,25,Female,Current Smoker,No,None,283
298
+ 297,20,Male,Ex-Smoker,No,None,202
299
+ 298,25,Female,Non-Smoker,No,None,208
300
+ 299,18,Male,Ex-Smoker,No,None,175
301
+ 300,59,Female,Current Smoker,No,None,332
asthama/model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d7e270f37e7a4fd5d536a0b6c96a233cbff0397e95aba0cfb6c91eaf107ba53
3
+ size 57844
asthama/preprocessor.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a961c4e191efaaacd8b0e7018371aaf206956cf1ccf635fcf00263c32f0ef18
3
+ size 4251
cardio_vascular/cardio_train.csv ADDED
The diff for this file is too large to render. See raw diff
 
cardio_vascular/xgboost_cardiovascular_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46dd4efb618b2c3dd2bd0c0988f6aec3d0c43db28bc71c766637ca99c1995f5a
3
+ size 769691
data_csv/Hypertension-risk-model-main.csv ADDED
The diff for this file is too large to render. See raw diff
 
data_csv/Sleep_health_and_lifestyle_dataset.csv ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Person ID,Gender,Age,Occupation,Sleep Duration,Quality of Sleep,Physical Activity Level,Stress Level,BMI Category,Blood Pressure,Heart Rate,Daily Steps,Sleep Disorder
2
+ 1,Male,27,Software Engineer,6.1,6,42,6,Overweight,126/83,77,4200,None
3
+ 2,Male,28,Doctor,6.2,6,60,8,Normal,125/80,75,10000,None
4
+ 3,Male,28,Doctor,6.2,6,60,8,Normal,125/80,75,10000,None
5
+ 4,Male,28,Sales Representative,5.9,4,30,8,Obese,140/90,85,3000,Sleep Apnea
6
+ 5,Male,28,Sales Representative,5.9,4,30,8,Obese,140/90,85,3000,Sleep Apnea
7
+ 6,Male,28,Software Engineer,5.9,4,30,8,Obese,140/90,85,3000,Insomnia
8
+ 7,Male,29,Teacher,6.3,6,40,7,Obese,140/90,82,3500,Insomnia
9
+ 8,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
10
+ 9,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
11
+ 10,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
12
+ 11,Male,29,Doctor,6.1,6,30,8,Normal,120/80,70,8000,None
13
+ 12,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
14
+ 13,Male,29,Doctor,6.1,6,30,8,Normal,120/80,70,8000,None
15
+ 14,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None
16
+ 15,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None
17
+ 16,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None
18
+ 17,Female,29,Nurse,6.5,5,40,7,Normal Weight,132/87,80,4000,Sleep Apnea
19
+ 18,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,Sleep Apnea
20
+ 19,Female,29,Nurse,6.5,5,40,7,Normal Weight,132/87,80,4000,Insomnia
21
+ 20,Male,30,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
22
+ 21,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
23
+ 22,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
24
+ 23,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
25
+ 24,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
26
+ 25,Male,30,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
27
+ 26,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
28
+ 27,Male,30,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
29
+ 28,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
30
+ 29,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
31
+ 30,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
32
+ 31,Female,30,Nurse,6.4,5,35,7,Normal Weight,130/86,78,4100,Sleep Apnea
33
+ 32,Female,30,Nurse,6.4,5,35,7,Normal Weight,130/86,78,4100,Insomnia
34
+ 33,Female,31,Nurse,7.9,8,75,4,Normal Weight,117/76,69,6800,None
35
+ 34,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
36
+ 35,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
37
+ 36,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
38
+ 37,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
39
+ 38,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
40
+ 39,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
41
+ 40,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
42
+ 41,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
43
+ 42,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
44
+ 43,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
45
+ 44,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
46
+ 45,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
47
+ 46,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
48
+ 47,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
49
+ 48,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
50
+ 49,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
51
+ 50,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,Sleep Apnea
52
+ 51,Male,32,Engineer,7.5,8,45,3,Normal,120/80,70,8000,None
53
+ 52,Male,32,Engineer,7.5,8,45,3,Normal,120/80,70,8000,None
54
+ 53,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
55
+ 54,Male,32,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
56
+ 55,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
57
+ 56,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
58
+ 57,Male,32,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
59
+ 58,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
60
+ 59,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
61
+ 60,Male,32,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
62
+ 61,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
63
+ 62,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
64
+ 63,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
65
+ 64,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
66
+ 65,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
67
+ 66,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
68
+ 67,Male,32,Accountant,7.2,8,50,6,Normal Weight,118/76,68,7000,None
69
+ 68,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,Insomnia
70
+ 69,Female,33,Scientist,6.2,6,50,6,Overweight,128/85,76,5500,None
71
+ 70,Female,33,Scientist,6.2,6,50,6,Overweight,128/85,76,5500,None
72
+ 71,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
73
+ 72,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
74
+ 73,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
75
+ 74,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
76
+ 75,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
77
+ 76,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
78
+ 77,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
79
+ 78,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
80
+ 79,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
81
+ 80,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
82
+ 81,Female,34,Scientist,5.8,4,32,8,Overweight,131/86,81,5200,Sleep Apnea
83
+ 82,Female,34,Scientist,5.8,4,32,8,Overweight,131/86,81,5200,Sleep Apnea
84
+ 83,Male,35,Teacher,6.7,7,40,5,Overweight,128/84,70,5600,None
85
+ 84,Male,35,Teacher,6.7,7,40,5,Overweight,128/84,70,5600,None
86
+ 85,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120/80,70,8000,None
87
+ 86,Female,35,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
88
+ 87,Male,35,Engineer,7.2,8,60,4,Normal,125/80,65,5000,None
89
+ 88,Male,35,Engineer,7.2,8,60,4,Normal,125/80,65,5000,None
90
+ 89,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
91
+ 90,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
92
+ 91,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
93
+ 92,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
94
+ 93,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120/80,70,8000,None
95
+ 94,Male,35,Lawyer,7.4,7,60,5,Obese,135/88,84,3300,Sleep Apnea
96
+ 95,Female,36,Accountant,7.2,8,60,4,Normal,115/75,68,7000,Insomnia
97
+ 96,Female,36,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
98
+ 97,Female,36,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
99
+ 98,Female,36,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
100
+ 99,Female,36,Teacher,7.1,8,60,4,Normal,115/75,68,7000,None
101
+ 100,Female,36,Teacher,7.1,8,60,4,Normal,115/75,68,7000,None
102
+ 101,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None
103
+ 102,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None
104
+ 103,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None
105
+ 104,Male,36,Teacher,6.6,5,35,7,Overweight,129/84,74,4800,Sleep Apnea
106
+ 105,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,Sleep Apnea
107
+ 106,Male,36,Teacher,6.6,5,35,7,Overweight,129/84,74,4800,Insomnia
108
+ 107,Female,37,Nurse,6.1,6,42,6,Overweight,126/83,77,4200,None
109
+ 108,Male,37,Engineer,7.8,8,70,4,Normal Weight,120/80,68,7000,None
110
+ 109,Male,37,Engineer,7.8,8,70,4,Normal Weight,120/80,68,7000,None
111
+ 110,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None
112
+ 111,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
113
+ 112,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None
114
+ 113,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
115
+ 114,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None
116
+ 115,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
117
+ 116,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
118
+ 117,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
119
+ 118,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
120
+ 119,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
121
+ 120,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
122
+ 121,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
123
+ 122,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
124
+ 123,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
125
+ 124,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
126
+ 125,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
127
+ 126,Female,37,Nurse,7.5,8,60,4,Normal Weight,120/80,70,8000,None
128
+ 127,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
129
+ 128,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
130
+ 129,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
131
+ 130,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
132
+ 131,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
133
+ 132,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
134
+ 133,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
135
+ 134,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
136
+ 135,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
137
+ 136,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
138
+ 137,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
139
+ 138,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None
140
+ 139,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
141
+ 140,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None
142
+ 141,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
143
+ 142,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None
144
+ 143,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
145
+ 144,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
146
+ 145,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,Sleep Apnea
147
+ 146,Female,38,Lawyer,7.4,7,60,5,Obese,135/88,84,3300,Sleep Apnea
148
+ 147,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,Insomnia
149
+ 148,Male,39,Engineer,6.5,5,40,7,Overweight,132/87,80,4000,Insomnia
150
+ 149,Female,39,Lawyer,6.9,7,50,6,Normal Weight,128/85,75,5500,None
151
+ 150,Female,39,Accountant,8,9,80,3,Normal Weight,115/78,67,7500,None
152
+ 151,Female,39,Accountant,8,9,80,3,Normal Weight,115/78,67,7500,None
153
+ 152,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
154
+ 153,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
155
+ 154,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
156
+ 155,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
157
+ 156,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
158
+ 157,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
159
+ 158,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
160
+ 159,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
161
+ 160,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
162
+ 161,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
163
+ 162,Female,40,Accountant,7.2,8,55,6,Normal Weight,119/77,73,7300,None
164
+ 163,Female,40,Accountant,7.2,8,55,6,Normal Weight,119/77,73,7300,None
165
+ 164,Male,40,Lawyer,7.9,8,90,5,Normal,130/85,68,8000,None
166
+ 165,Male,40,Lawyer,7.9,8,90,5,Normal,130/85,68,8000,None
167
+ 166,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,Insomnia
168
+ 167,Male,41,Engineer,7.3,8,70,6,Normal Weight,121/79,72,6200,None
169
+ 168,Male,41,Lawyer,7.1,7,55,6,Overweight,125/82,72,6000,None
170
+ 169,Male,41,Lawyer,7.1,7,55,6,Overweight,125/82,72,6000,None
171
+ 170,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
172
+ 171,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
173
+ 172,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
174
+ 173,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
175
+ 174,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
176
+ 175,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None
177
+ 176,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None
178
+ 177,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None
179
+ 178,Male,42,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
180
+ 179,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
181
+ 180,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
182
+ 181,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
183
+ 182,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
184
+ 183,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
185
+ 184,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
186
+ 185,Female,42,Teacher,6.8,6,45,7,Overweight,130/85,78,5000,Sleep Apnea
187
+ 186,Female,42,Teacher,6.8,6,45,7,Overweight,130/85,78,5000,Sleep Apnea
188
+ 187,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia
189
+ 188,Male,43,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
190
+ 189,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia
191
+ 190,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
192
+ 191,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia
193
+ 192,Male,43,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
194
+ 193,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
195
+ 194,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
196
+ 195,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
197
+ 196,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
198
+ 197,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
199
+ 198,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
200
+ 199,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
201
+ 200,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
202
+ 201,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
203
+ 202,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Insomnia
204
+ 203,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Insomnia
205
+ 204,Male,43,Engineer,6.9,6,47,7,Normal Weight,117/76,69,6800,None
206
+ 205,Male,43,Engineer,7.6,8,75,4,Overweight,122/80,68,6800,None
207
+ 206,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
208
+ 207,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
209
+ 208,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
210
+ 209,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
211
+ 210,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
212
+ 211,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
213
+ 212,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
214
+ 213,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
215
+ 214,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
216
+ 215,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
217
+ 216,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
218
+ 217,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
219
+ 218,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
220
+ 219,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Sleep Apnea
221
+ 220,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Sleep Apnea
222
+ 221,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
223
+ 222,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
224
+ 223,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
225
+ 224,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
226
+ 225,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
227
+ 226,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
228
+ 227,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
229
+ 228,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
230
+ 229,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
231
+ 230,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
232
+ 231,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
233
+ 232,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
234
+ 233,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
235
+ 234,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
236
+ 235,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
237
+ 236,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
238
+ 237,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
239
+ 238,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
240
+ 239,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
241
+ 240,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
242
+ 241,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
243
+ 242,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
244
+ 243,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
245
+ 244,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
246
+ 245,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
247
+ 246,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
248
+ 247,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
249
+ 248,Male,44,Engineer,6.8,7,45,7,Overweight,130/85,78,5000,Insomnia
250
+ 249,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,None
251
+ 250,Male,44,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,None
252
+ 251,Female,45,Teacher,6.8,7,30,6,Overweight,135/90,65,6000,Insomnia
253
+ 252,Female,45,Teacher,6.8,7,30,6,Overweight,135/90,65,6000,Insomnia
254
+ 253,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
255
+ 254,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
256
+ 255,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
257
+ 256,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
258
+ 257,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
259
+ 258,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
260
+ 259,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
261
+ 260,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
262
+ 261,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
263
+ 262,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,None
264
+ 263,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,None
265
+ 264,Female,45,Manager,6.9,7,55,5,Overweight,125/82,75,5500,None
266
+ 265,Male,48,Doctor,7.3,7,65,5,Obese,142/92,83,3500,Insomnia
267
+ 266,Female,48,Nurse,5.9,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
268
+ 267,Male,48,Doctor,7.3,7,65,5,Obese,142/92,83,3500,Insomnia
269
+ 268,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,None
270
+ 269,Female,49,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
271
+ 270,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
272
+ 271,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
273
+ 272,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
274
+ 273,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
275
+ 274,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
276
+ 275,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
277
+ 276,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
278
+ 277,Male,49,Doctor,8.1,9,85,3,Obese,139/91,86,3700,Sleep Apnea
279
+ 278,Male,49,Doctor,8.1,9,85,3,Obese,139/91,86,3700,Sleep Apnea
280
+ 279,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Insomnia
281
+ 280,Female,50,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
282
+ 281,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,None
283
+ 282,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
284
+ 283,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
285
+ 284,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
286
+ 285,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
287
+ 286,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
288
+ 287,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
289
+ 288,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
290
+ 289,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
291
+ 290,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
292
+ 291,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
293
+ 292,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
294
+ 293,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
295
+ 294,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
296
+ 295,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
297
+ 296,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
298
+ 297,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
299
+ 298,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
300
+ 299,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
301
+ 300,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
302
+ 301,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
303
+ 302,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
304
+ 303,Female,51,Nurse,7.1,7,55,6,Normal Weight,125/82,72,6000,None
305
+ 304,Female,51,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
306
+ 305,Female,51,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
307
+ 306,Female,51,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
308
+ 307,Female,52,Accountant,6.5,7,45,7,Overweight,130/85,72,6000,Insomnia
309
+ 308,Female,52,Accountant,6.5,7,45,7,Overweight,130/85,72,6000,Insomnia
310
+ 309,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
311
+ 310,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
312
+ 311,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
313
+ 312,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
314
+ 313,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
315
+ 314,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
316
+ 315,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
317
+ 316,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,Insomnia
318
+ 317,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
319
+ 318,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
320
+ 319,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
321
+ 320,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
322
+ 321,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
323
+ 322,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
324
+ 323,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
325
+ 324,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
326
+ 325,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
327
+ 326,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
328
+ 327,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
329
+ 328,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
330
+ 329,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
331
+ 330,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
332
+ 331,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
333
+ 332,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
334
+ 333,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
335
+ 334,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
336
+ 335,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
337
+ 336,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
338
+ 337,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
339
+ 338,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
340
+ 339,Female,54,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
341
+ 340,Female,55,Nurse,8.1,9,75,4,Overweight,140/95,72,5000,Sleep Apnea
342
+ 341,Female,55,Nurse,8.1,9,75,4,Overweight,140/95,72,5000,Sleep Apnea
343
+ 342,Female,56,Doctor,8.2,9,90,3,Normal Weight,118/75,65,10000,None
344
+ 343,Female,56,Doctor,8.2,9,90,3,Normal Weight,118/75,65,10000,None
345
+ 344,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,None
346
+ 345,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
347
+ 346,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
348
+ 347,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
349
+ 348,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
350
+ 349,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
351
+ 350,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
352
+ 351,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
353
+ 352,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
354
+ 353,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
355
+ 354,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
356
+ 355,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
357
+ 356,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
358
+ 357,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
359
+ 358,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
360
+ 359,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,None
361
+ 360,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,None
362
+ 361,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
363
+ 362,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
364
+ 363,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
365
+ 364,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
366
+ 365,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
367
+ 366,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
368
+ 367,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
369
+ 368,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
370
+ 369,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
371
+ 370,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
372
+ 371,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
373
+ 372,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
374
+ 373,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
375
+ 374,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
data_csv/asthma_dataset.csv ADDED
@@ -0,0 +1,301 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Patient_ID,Age,Gender,Smoking_Status,Asthma_Diagnosis,Medication,Peak_Flow
2
+ 1,26,Female,Non-Smoker,Yes,Inhaler,175
3
+ 2,52,Female,Ex-Smoker,No,None,156
4
+ 3,56,Female,Ex-Smoker,Yes,Inhaler,236
5
+ 4,55,Male,Current Smoker,Yes,Controller Medication,378
6
+ 5,43,Female,Current Smoker,No,None,159
7
+ 6,23,Male,Non-Smoker,No,None,376
8
+ 7,33,Female,Current Smoker,No,None,296
9
+ 8,20,Male,Current Smoker,Yes,Controller Medication,322
10
+ 9,36,Male,Current Smoker,No,None,175
11
+ 10,27,Male,Ex-Smoker,No,None,264
12
+ 11,34,Female,Ex-Smoker,No,None,240
13
+ 12,43,Male,Current Smoker,No,None,354
14
+ 13,51,Female,Non-Smoker,Yes,Inhaler,171
15
+ 14,54,Male,Non-Smoker,Yes,Inhaler,327
16
+ 15,22,Female,Current Smoker,Yes,Inhaler,304
17
+ 16,53,Female,Non-Smoker,Yes,Controller Medication,336
18
+ 17,39,Female,Current Smoker,Yes,Controller Medication,307
19
+ 18,34,Male,Non-Smoker,Yes,Controller Medication,372
20
+ 19,51,Male,Current Smoker,No,None,239
21
+ 20,37,Male,Non-Smoker,Yes,Controller Medication,309
22
+ 21,52,Female,Ex-Smoker,No,None,323
23
+ 22,24,Female,Non-Smoker,No,None,160
24
+ 23,56,Female,Ex-Smoker,Yes,Controller Medication,286
25
+ 24,23,Female,Current Smoker,Yes,Inhaler,282
26
+ 25,58,Male,Non-Smoker,No,None,248
27
+ 26,27,Male,Ex-Smoker,No,None,325
28
+ 27,41,Male,Non-Smoker,No,None,233
29
+ 28,27,Male,Current Smoker,No,None,346
30
+ 29,63,Male,Current Smoker,No,None,379
31
+ 30,25,Female,Current Smoker,Yes,Inhaler,207
32
+ 31,42,Male,Non-Smoker,Yes,Inhaler,168
33
+ 32,18,Female,Non-Smoker,No,None,200
34
+ 33,22,Female,Ex-Smoker,Yes,Inhaler,323
35
+ 34,54,Male,Non-Smoker,Yes,Controller Medication,386
36
+ 35,22,Female,Ex-Smoker,Yes,Controller Medication,257
37
+ 36,34,Female,Current Smoker,Yes,Controller Medication,349
38
+ 37,20,Male,Current Smoker,No,None,273
39
+ 38,43,Male,Current Smoker,No,None,260
40
+ 39,19,Male,Non-Smoker,No,None,249
41
+ 40,65,Female,Non-Smoker,Yes,Controller Medication,203
42
+ 41,22,Female,Current Smoker,No,None,384
43
+ 42,58,Female,Current Smoker,Yes,Inhaler,253
44
+ 43,59,Male,Current Smoker,Yes,Inhaler,383
45
+ 44,54,Male,Ex-Smoker,Yes,Controller Medication,202
46
+ 45,57,Female,Ex-Smoker,Yes,Inhaler,310
47
+ 46,45,Male,Non-Smoker,No,None,287
48
+ 47,62,Female,Ex-Smoker,No,None,348
49
+ 48,39,Male,Non-Smoker,Yes,Controller Medication,230
50
+ 49,43,Female,Non-Smoker,No,None,388
51
+ 50,20,Male,Current Smoker,No,None,331
52
+ 51,59,Female,Non-Smoker,No,None,288
53
+ 52,21,Female,Non-Smoker,No,None,378
54
+ 53,58,Male,Current Smoker,No,None,284
55
+ 54,23,Male,Current Smoker,Yes,Controller Medication,205
56
+ 55,48,Male,Current Smoker,No,None,352
57
+ 56,54,Female,Ex-Smoker,Yes,Inhaler,383
58
+ 57,47,Male,Ex-Smoker,No,None,267
59
+ 58,50,Male,Non-Smoker,No,None,269
60
+ 59,64,Female,Ex-Smoker,No,None,398
61
+ 60,52,Female,Ex-Smoker,No,None,259
62
+ 61,38,Male,Ex-Smoker,No,None,307
63
+ 62,28,Male,Ex-Smoker,No,None,258
64
+ 63,46,Male,Non-Smoker,Yes,Controller Medication,194
65
+ 64,49,Male,Ex-Smoker,No,None,157
66
+ 65,60,Male,Ex-Smoker,Yes,Inhaler,207
67
+ 66,47,Male,Current Smoker,Yes,Controller Medication,382
68
+ 67,24,Female,Current Smoker,Yes,Controller Medication,151
69
+ 68,43,Male,Non-Smoker,No,None,321
70
+ 69,41,Female,Non-Smoker,Yes,Controller Medication,260
71
+ 70,49,Male,Ex-Smoker,No,None,284
72
+ 71,50,Female,Non-Smoker,Yes,Controller Medication,176
73
+ 72,20,Male,Non-Smoker,No,None,248
74
+ 73,58,Female,Non-Smoker,Yes,Inhaler,270
75
+ 74,28,Female,Current Smoker,Yes,Controller Medication,389
76
+ 75,39,Male,Non-Smoker,No,None,357
77
+ 76,65,Male,Non-Smoker,Yes,Inhaler,280
78
+ 77,43,Female,Ex-Smoker,Yes,Inhaler,397
79
+ 78,32,Female,Current Smoker,Yes,Controller Medication,200
80
+ 79,63,Female,Non-Smoker,Yes,Controller Medication,212
81
+ 80,58,Female,Ex-Smoker,No,None,300
82
+ 81,22,Female,Ex-Smoker,Yes,Controller Medication,294
83
+ 82,37,Male,Ex-Smoker,Yes,Inhaler,358
84
+ 83,52,Female,Ex-Smoker,Yes,Inhaler,198
85
+ 84,51,Male,Current Smoker,Yes,Controller Medication,263
86
+ 85,25,Female,Current Smoker,Yes,Controller Medication,200
87
+ 86,30,Male,Ex-Smoker,No,None,159
88
+ 87,53,Male,Ex-Smoker,No,None,152
89
+ 88,38,Female,Ex-Smoker,No,None,267
90
+ 89,45,Male,Current Smoker,Yes,Inhaler,237
91
+ 90,38,Female,Ex-Smoker,No,None,286
92
+ 91,23,Male,Non-Smoker,No,None,363
93
+ 92,36,Female,Non-Smoker,No,None,380
94
+ 93,38,Female,Ex-Smoker,Yes,Controller Medication,305
95
+ 94,34,Male,Current Smoker,No,None,218
96
+ 95,29,Female,Non-Smoker,No,None,185
97
+ 96,23,Male,Non-Smoker,No,None,181
98
+ 97,36,Male,Ex-Smoker,No,None,336
99
+ 98,46,Female,Non-Smoker,Yes,Inhaler,262
100
+ 99,34,Female,Non-Smoker,Yes,Inhaler,188
101
+ 100,23,Male,Ex-Smoker,Yes,Inhaler,384
102
+ 101,45,Male,Ex-Smoker,Yes,Controller Medication,210
103
+ 102,33,Male,Current Smoker,No,None,338
104
+ 103,27,Male,Non-Smoker,No,None,294
105
+ 104,34,Female,Current Smoker,No,None,301
106
+ 105,27,Male,Ex-Smoker,No,None,322
107
+ 106,47,Female,Non-Smoker,Yes,Controller Medication,263
108
+ 107,21,Male,Ex-Smoker,Yes,Inhaler,308
109
+ 108,44,Female,Non-Smoker,Yes,Inhaler,377
110
+ 109,44,Male,Non-Smoker,Yes,Inhaler,289
111
+ 110,52,Male,Ex-Smoker,No,None,197
112
+ 111,26,Male,Current Smoker,Yes,Inhaler,337
113
+ 112,48,Male,Current Smoker,Yes,Controller Medication,346
114
+ 113,27,Male,Current Smoker,Yes,Controller Medication,385
115
+ 114,24,Female,Non-Smoker,No,None,281
116
+ 115,34,Female,Ex-Smoker,No,None,358
117
+ 116,49,Male,Current Smoker,No,None,212
118
+ 117,65,Male,Non-Smoker,No,None,268
119
+ 118,30,Female,Non-Smoker,Yes,Inhaler,372
120
+ 119,62,Female,Non-Smoker,No,None,377
121
+ 120,45,Female,Current Smoker,Yes,Controller Medication,383
122
+ 121,58,Female,Non-Smoker,Yes,Controller Medication,316
123
+ 122,48,Male,Non-Smoker,Yes,Inhaler,245
124
+ 123,63,Female,Ex-Smoker,Yes,Inhaler,162
125
+ 124,48,Male,Ex-Smoker,No,None,348
126
+ 125,51,Male,Non-Smoker,Yes,Inhaler,232
127
+ 126,26,Female,Current Smoker,No,None,184
128
+ 127,23,Female,Current Smoker,No,None,182
129
+ 128,27,Female,Ex-Smoker,No,None,215
130
+ 129,43,Female,Non-Smoker,No,None,276
131
+ 130,32,Female,Current Smoker,Yes,Inhaler,357
132
+ 131,23,Female,Non-Smoker,Yes,Controller Medication,390
133
+ 132,29,Female,Ex-Smoker,Yes,Controller Medication,295
134
+ 133,29,Male,Non-Smoker,No,None,376
135
+ 134,30,Female,Non-Smoker,No,None,261
136
+ 135,24,Male,Ex-Smoker,No,None,254
137
+ 136,27,Female,Current Smoker,No,None,226
138
+ 137,52,Male,Current Smoker,No,None,363
139
+ 138,34,Female,Current Smoker,No,None,381
140
+ 139,29,Female,Current Smoker,Yes,Controller Medication,162
141
+ 140,52,Female,Non-Smoker,Yes,Controller Medication,207
142
+ 141,24,Female,Non-Smoker,Yes,Controller Medication,280
143
+ 142,41,Male,Current Smoker,Yes,Controller Medication,150
144
+ 143,65,Male,Current Smoker,Yes,Inhaler,178
145
+ 144,33,Male,Ex-Smoker,No,None,290
146
+ 145,21,Male,Current Smoker,Yes,Controller Medication,376
147
+ 146,36,Male,Current Smoker,No,None,176
148
+ 147,59,Female,Ex-Smoker,Yes,Inhaler,392
149
+ 148,27,Male,Current Smoker,Yes,Inhaler,224
150
+ 149,46,Male,Non-Smoker,No,None,192
151
+ 150,38,Female,Non-Smoker,Yes,Inhaler,314
152
+ 151,62,Female,Current Smoker,Yes,Controller Medication,347
153
+ 152,30,Male,Ex-Smoker,No,None,203
154
+ 153,31,Female,Non-Smoker,No,None,351
155
+ 154,25,Female,Current Smoker,Yes,Inhaler,304
156
+ 155,45,Female,Current Smoker,Yes,Inhaler,181
157
+ 156,27,Female,Non-Smoker,Yes,Controller Medication,159
158
+ 157,42,Male,Ex-Smoker,No,None,302
159
+ 158,29,Male,Non-Smoker,No,None,332
160
+ 159,18,Male,Ex-Smoker,Yes,Inhaler,183
161
+ 160,18,Male,Ex-Smoker,Yes,Inhaler,375
162
+ 161,26,Female,Non-Smoker,No,None,351
163
+ 162,44,Female,Current Smoker,Yes,Controller Medication,234
164
+ 163,45,Male,Non-Smoker,No,None,400
165
+ 164,49,Female,Ex-Smoker,Yes,Controller Medication,327
166
+ 165,42,Female,Non-Smoker,Yes,Controller Medication,274
167
+ 166,59,Female,Ex-Smoker,No,None,178
168
+ 167,28,Female,Ex-Smoker,No,None,278
169
+ 168,34,Female,Current Smoker,No,None,334
170
+ 169,64,Male,Current Smoker,No,None,154
171
+ 170,41,Female,Current Smoker,No,None,253
172
+ 171,59,Female,Non-Smoker,Yes,Inhaler,274
173
+ 172,38,Male,Ex-Smoker,Yes,Controller Medication,364
174
+ 173,41,Female,Non-Smoker,No,None,199
175
+ 174,46,Female,Current Smoker,Yes,Inhaler,251
176
+ 175,37,Female,Ex-Smoker,Yes,Inhaler,248
177
+ 176,41,Female,Ex-Smoker,No,None,400
178
+ 177,61,Male,Non-Smoker,Yes,Controller Medication,175
179
+ 178,41,Female,Ex-Smoker,No,None,169
180
+ 179,21,Male,Ex-Smoker,No,None,377
181
+ 180,25,Female,Current Smoker,Yes,Controller Medication,382
182
+ 181,33,Female,Current Smoker,Yes,Inhaler,304
183
+ 182,27,Male,Non-Smoker,Yes,Controller Medication,230
184
+ 183,41,Female,Current Smoker,Yes,Controller Medication,375
185
+ 184,39,Female,Ex-Smoker,Yes,Controller Medication,245
186
+ 185,22,Male,Current Smoker,No,None,277
187
+ 186,28,Male,Non-Smoker,Yes,Controller Medication,320
188
+ 187,24,Female,Non-Smoker,Yes,Controller Medication,224
189
+ 188,46,Female,Non-Smoker,Yes,Inhaler,389
190
+ 189,29,Male,Ex-Smoker,No,None,383
191
+ 190,55,Male,Current Smoker,Yes,Inhaler,323
192
+ 191,35,Female,Current Smoker,Yes,Controller Medication,329
193
+ 192,29,Male,Current Smoker,No,None,372
194
+ 193,27,Male,Ex-Smoker,Yes,Inhaler,217
195
+ 194,23,Male,Current Smoker,Yes,Inhaler,333
196
+ 195,49,Female,Ex-Smoker,Yes,Inhaler,241
197
+ 196,37,Female,Ex-Smoker,Yes,Controller Medication,261
198
+ 197,26,Female,Non-Smoker,No,None,337
199
+ 198,52,Female,Non-Smoker,Yes,Inhaler,189
200
+ 199,20,Female,Non-Smoker,Yes,Inhaler,373
201
+ 200,29,Female,Non-Smoker,No,None,152
202
+ 201,60,Male,Current Smoker,Yes,Controller Medication,297
203
+ 202,65,Male,Current Smoker,Yes,Inhaler,391
204
+ 203,64,Female,Current Smoker,No,None,232
205
+ 204,20,Male,Non-Smoker,No,None,196
206
+ 205,59,Female,Current Smoker,Yes,Controller Medication,268
207
+ 206,50,Male,Ex-Smoker,No,None,161
208
+ 207,59,Female,Current Smoker,Yes,Controller Medication,248
209
+ 208,20,Female,Current Smoker,Yes,Inhaler,172
210
+ 209,48,Male,Current Smoker,Yes,Inhaler,282
211
+ 210,47,Male,Non-Smoker,No,None,254
212
+ 211,65,Female,Ex-Smoker,No,None,395
213
+ 212,23,Male,Current Smoker,Yes,Inhaler,337
214
+ 213,48,Male,Ex-Smoker,No,None,328
215
+ 214,65,Male,Ex-Smoker,Yes,Inhaler,397
216
+ 215,54,Female,Current Smoker,No,None,334
217
+ 216,38,Male,Ex-Smoker,No,None,220
218
+ 217,24,Female,Current Smoker,No,None,271
219
+ 218,60,Female,Ex-Smoker,No,None,228
220
+ 219,27,Male,Ex-Smoker,Yes,Controller Medication,332
221
+ 220,21,Female,Non-Smoker,No,None,231
222
+ 221,52,Female,Current Smoker,Yes,Controller Medication,175
223
+ 222,44,Male,Non-Smoker,Yes,Controller Medication,378
224
+ 223,22,Female,Current Smoker,No,None,320
225
+ 224,30,Female,Ex-Smoker,No,None,277
226
+ 225,19,Female,Current Smoker,No,None,161
227
+ 226,30,Female,Current Smoker,Yes,Inhaler,264
228
+ 227,61,Female,Non-Smoker,No,None,385
229
+ 228,27,Female,Non-Smoker,No,None,375
230
+ 229,45,Male,Non-Smoker,Yes,Inhaler,398
231
+ 230,64,Male,Non-Smoker,Yes,Controller Medication,154
232
+ 231,29,Female,Non-Smoker,Yes,Controller Medication,296
233
+ 232,18,Male,Non-Smoker,Yes,Controller Medication,176
234
+ 233,56,Female,Ex-Smoker,No,None,301
235
+ 234,30,Male,Ex-Smoker,Yes,Controller Medication,351
236
+ 235,64,Female,Current Smoker,Yes,Controller Medication,218
237
+ 236,26,Female,Current Smoker,No,None,210
238
+ 237,45,Male,Non-Smoker,No,None,372
239
+ 238,45,Female,Non-Smoker,Yes,Inhaler,316
240
+ 239,64,Female,Non-Smoker,Yes,Inhaler,164
241
+ 240,64,Male,Non-Smoker,No,None,328
242
+ 241,58,Female,Current Smoker,Yes,Inhaler,315
243
+ 242,22,Male,Non-Smoker,Yes,Inhaler,204
244
+ 243,39,Male,Non-Smoker,Yes,Controller Medication,257
245
+ 244,45,Female,Non-Smoker,Yes,Inhaler,151
246
+ 245,33,Male,Non-Smoker,Yes,Inhaler,352
247
+ 246,31,Female,Non-Smoker,No,None,226
248
+ 247,63,Female,Current Smoker,No,None,310
249
+ 248,63,Female,Current Smoker,No,None,289
250
+ 249,46,Female,Non-Smoker,Yes,Controller Medication,218
251
+ 250,54,Female,Non-Smoker,Yes,Inhaler,341
252
+ 251,21,Female,Current Smoker,Yes,Controller Medication,217
253
+ 252,32,Male,Current Smoker,No,None,360
254
+ 253,54,Female,Non-Smoker,Yes,Controller Medication,184
255
+ 254,58,Female,Current Smoker,No,None,283
256
+ 255,19,Female,Current Smoker,No,None,213
257
+ 256,42,Male,Current Smoker,No,None,265
258
+ 257,40,Male,Current Smoker,No,None,231
259
+ 258,43,Male,Non-Smoker,Yes,Controller Medication,349
260
+ 259,40,Male,Ex-Smoker,No,None,371
261
+ 260,51,Male,Non-Smoker,Yes,Controller Medication,272
262
+ 261,32,Female,Ex-Smoker,Yes,Inhaler,334
263
+ 262,28,Male,Current Smoker,Yes,Inhaler,170
264
+ 263,59,Male,Ex-Smoker,Yes,Inhaler,212
265
+ 264,47,Female,Current Smoker,Yes,Controller Medication,230
266
+ 265,19,Male,Ex-Smoker,Yes,Controller Medication,384
267
+ 266,32,Female,Ex-Smoker,No,None,177
268
+ 267,43,Female,Ex-Smoker,Yes,Controller Medication,206
269
+ 268,50,Male,Non-Smoker,Yes,Controller Medication,330
270
+ 269,29,Male,Non-Smoker,No,None,225
271
+ 270,29,Female,Non-Smoker,Yes,Controller Medication,260
272
+ 271,48,Male,Current Smoker,Yes,Inhaler,211
273
+ 272,29,Male,Ex-Smoker,No,None,270
274
+ 273,35,Female,Non-Smoker,No,None,260
275
+ 274,51,Male,Ex-Smoker,No,None,332
276
+ 275,65,Female,Non-Smoker,Yes,Controller Medication,229
277
+ 276,63,Female,Ex-Smoker,No,None,381
278
+ 277,31,Female,Non-Smoker,No,None,188
279
+ 278,63,Female,Current Smoker,Yes,Controller Medication,387
280
+ 279,42,Female,Non-Smoker,No,None,178
281
+ 280,44,Male,Ex-Smoker,Yes,Controller Medication,198
282
+ 281,59,Male,Non-Smoker,No,None,187
283
+ 282,18,Male,Non-Smoker,Yes,Inhaler,243
284
+ 283,53,Male,Ex-Smoker,No,None,286
285
+ 284,49,Male,Ex-Smoker,Yes,Controller Medication,300
286
+ 285,20,Male,Current Smoker,Yes,Controller Medication,340
287
+ 286,30,Male,Ex-Smoker,No,None,293
288
+ 287,21,Female,Current Smoker,Yes,Controller Medication,253
289
+ 288,21,Female,Ex-Smoker,Yes,Inhaler,272
290
+ 289,21,Female,Non-Smoker,Yes,Controller Medication,262
291
+ 290,22,Male,Ex-Smoker,No,None,400
292
+ 291,47,Female,Ex-Smoker,No,None,362
293
+ 292,19,Male,Ex-Smoker,Yes,Controller Medication,287
294
+ 293,28,Female,Non-Smoker,Yes,Inhaler,350
295
+ 294,36,Female,Current Smoker,No,None,345
296
+ 295,49,Male,Non-Smoker,Yes,Inhaler,367
297
+ 296,25,Female,Current Smoker,No,None,283
298
+ 297,20,Male,Ex-Smoker,No,None,202
299
+ 298,25,Female,Non-Smoker,No,None,208
300
+ 299,18,Male,Ex-Smoker,No,None,175
301
+ 300,59,Female,Current Smoker,No,None,332
data_csv/cardio_train.csv ADDED
The diff for this file is too large to render. See raw diff
 
data_csv/diabetes.csv ADDED
@@ -0,0 +1,769 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age,Outcome
2
+ 6,148,72,35,0,33.6,0.627,50,1
3
+ 1,85,66,29,0,26.6,0.351,31,0
4
+ 8,183,64,0,0,23.3,0.672,32,1
5
+ 1,89,66,23,94,28.1,0.167,21,0
6
+ 0,137,40,35,168,43.1,2.288,33,1
7
+ 5,116,74,0,0,25.6,0.201,30,0
8
+ 3,78,50,32,88,31,0.248,26,1
9
+ 10,115,0,0,0,35.3,0.134,29,0
10
+ 2,197,70,45,543,30.5,0.158,53,1
11
+ 8,125,96,0,0,0,0.232,54,1
12
+ 4,110,92,0,0,37.6,0.191,30,0
13
+ 10,168,74,0,0,38,0.537,34,1
14
+ 10,139,80,0,0,27.1,1.441,57,0
15
+ 1,189,60,23,846,30.1,0.398,59,1
16
+ 5,166,72,19,175,25.8,0.587,51,1
17
+ 7,100,0,0,0,30,0.484,32,1
18
+ 0,118,84,47,230,45.8,0.551,31,1
19
+ 7,107,74,0,0,29.6,0.254,31,1
20
+ 1,103,30,38,83,43.3,0.183,33,0
21
+ 1,115,70,30,96,34.6,0.529,32,1
22
+ 3,126,88,41,235,39.3,0.704,27,0
23
+ 8,99,84,0,0,35.4,0.388,50,0
24
+ 7,196,90,0,0,39.8,0.451,41,1
25
+ 9,119,80,35,0,29,0.263,29,1
26
+ 11,143,94,33,146,36.6,0.254,51,1
27
+ 10,125,70,26,115,31.1,0.205,41,1
28
+ 7,147,76,0,0,39.4,0.257,43,1
29
+ 1,97,66,15,140,23.2,0.487,22,0
30
+ 13,145,82,19,110,22.2,0.245,57,0
31
+ 5,117,92,0,0,34.1,0.337,38,0
32
+ 5,109,75,26,0,36,0.546,60,0
33
+ 3,158,76,36,245,31.6,0.851,28,1
34
+ 3,88,58,11,54,24.8,0.267,22,0
35
+ 6,92,92,0,0,19.9,0.188,28,0
36
+ 10,122,78,31,0,27.6,0.512,45,0
37
+ 4,103,60,33,192,24,0.966,33,0
38
+ 11,138,76,0,0,33.2,0.42,35,0
39
+ 9,102,76,37,0,32.9,0.665,46,1
40
+ 2,90,68,42,0,38.2,0.503,27,1
41
+ 4,111,72,47,207,37.1,1.39,56,1
42
+ 3,180,64,25,70,34,0.271,26,0
43
+ 7,133,84,0,0,40.2,0.696,37,0
44
+ 7,106,92,18,0,22.7,0.235,48,0
45
+ 9,171,110,24,240,45.4,0.721,54,1
46
+ 7,159,64,0,0,27.4,0.294,40,0
47
+ 0,180,66,39,0,42,1.893,25,1
48
+ 1,146,56,0,0,29.7,0.564,29,0
49
+ 2,71,70,27,0,28,0.586,22,0
50
+ 7,103,66,32,0,39.1,0.344,31,1
51
+ 7,105,0,0,0,0,0.305,24,0
52
+ 1,103,80,11,82,19.4,0.491,22,0
53
+ 1,101,50,15,36,24.2,0.526,26,0
54
+ 5,88,66,21,23,24.4,0.342,30,0
55
+ 8,176,90,34,300,33.7,0.467,58,1
56
+ 7,150,66,42,342,34.7,0.718,42,0
57
+ 1,73,50,10,0,23,0.248,21,0
58
+ 7,187,68,39,304,37.7,0.254,41,1
59
+ 0,100,88,60,110,46.8,0.962,31,0
60
+ 0,146,82,0,0,40.5,1.781,44,0
61
+ 0,105,64,41,142,41.5,0.173,22,0
62
+ 2,84,0,0,0,0,0.304,21,0
63
+ 8,133,72,0,0,32.9,0.27,39,1
64
+ 5,44,62,0,0,25,0.587,36,0
65
+ 2,141,58,34,128,25.4,0.699,24,0
66
+ 7,114,66,0,0,32.8,0.258,42,1
67
+ 5,99,74,27,0,29,0.203,32,0
68
+ 0,109,88,30,0,32.5,0.855,38,1
69
+ 2,109,92,0,0,42.7,0.845,54,0
70
+ 1,95,66,13,38,19.6,0.334,25,0
71
+ 4,146,85,27,100,28.9,0.189,27,0
72
+ 2,100,66,20,90,32.9,0.867,28,1
73
+ 5,139,64,35,140,28.6,0.411,26,0
74
+ 13,126,90,0,0,43.4,0.583,42,1
75
+ 4,129,86,20,270,35.1,0.231,23,0
76
+ 1,79,75,30,0,32,0.396,22,0
77
+ 1,0,48,20,0,24.7,0.14,22,0
78
+ 7,62,78,0,0,32.6,0.391,41,0
79
+ 5,95,72,33,0,37.7,0.37,27,0
80
+ 0,131,0,0,0,43.2,0.27,26,1
81
+ 2,112,66,22,0,25,0.307,24,0
82
+ 3,113,44,13,0,22.4,0.14,22,0
83
+ 2,74,0,0,0,0,0.102,22,0
84
+ 7,83,78,26,71,29.3,0.767,36,0
85
+ 0,101,65,28,0,24.6,0.237,22,0
86
+ 5,137,108,0,0,48.8,0.227,37,1
87
+ 2,110,74,29,125,32.4,0.698,27,0
88
+ 13,106,72,54,0,36.6,0.178,45,0
89
+ 2,100,68,25,71,38.5,0.324,26,0
90
+ 15,136,70,32,110,37.1,0.153,43,1
91
+ 1,107,68,19,0,26.5,0.165,24,0
92
+ 1,80,55,0,0,19.1,0.258,21,0
93
+ 4,123,80,15,176,32,0.443,34,0
94
+ 7,81,78,40,48,46.7,0.261,42,0
95
+ 4,134,72,0,0,23.8,0.277,60,1
96
+ 2,142,82,18,64,24.7,0.761,21,0
97
+ 6,144,72,27,228,33.9,0.255,40,0
98
+ 2,92,62,28,0,31.6,0.13,24,0
99
+ 1,71,48,18,76,20.4,0.323,22,0
100
+ 6,93,50,30,64,28.7,0.356,23,0
101
+ 1,122,90,51,220,49.7,0.325,31,1
102
+ 1,163,72,0,0,39,1.222,33,1
103
+ 1,151,60,0,0,26.1,0.179,22,0
104
+ 0,125,96,0,0,22.5,0.262,21,0
105
+ 1,81,72,18,40,26.6,0.283,24,0
106
+ 2,85,65,0,0,39.6,0.93,27,0
107
+ 1,126,56,29,152,28.7,0.801,21,0
108
+ 1,96,122,0,0,22.4,0.207,27,0
109
+ 4,144,58,28,140,29.5,0.287,37,0
110
+ 3,83,58,31,18,34.3,0.336,25,0
111
+ 0,95,85,25,36,37.4,0.247,24,1
112
+ 3,171,72,33,135,33.3,0.199,24,1
113
+ 8,155,62,26,495,34,0.543,46,1
114
+ 1,89,76,34,37,31.2,0.192,23,0
115
+ 4,76,62,0,0,34,0.391,25,0
116
+ 7,160,54,32,175,30.5,0.588,39,1
117
+ 4,146,92,0,0,31.2,0.539,61,1
118
+ 5,124,74,0,0,34,0.22,38,1
119
+ 5,78,48,0,0,33.7,0.654,25,0
120
+ 4,97,60,23,0,28.2,0.443,22,0
121
+ 4,99,76,15,51,23.2,0.223,21,0
122
+ 0,162,76,56,100,53.2,0.759,25,1
123
+ 6,111,64,39,0,34.2,0.26,24,0
124
+ 2,107,74,30,100,33.6,0.404,23,0
125
+ 5,132,80,0,0,26.8,0.186,69,0
126
+ 0,113,76,0,0,33.3,0.278,23,1
127
+ 1,88,30,42,99,55,0.496,26,1
128
+ 3,120,70,30,135,42.9,0.452,30,0
129
+ 1,118,58,36,94,33.3,0.261,23,0
130
+ 1,117,88,24,145,34.5,0.403,40,1
131
+ 0,105,84,0,0,27.9,0.741,62,1
132
+ 4,173,70,14,168,29.7,0.361,33,1
133
+ 9,122,56,0,0,33.3,1.114,33,1
134
+ 3,170,64,37,225,34.5,0.356,30,1
135
+ 8,84,74,31,0,38.3,0.457,39,0
136
+ 2,96,68,13,49,21.1,0.647,26,0
137
+ 2,125,60,20,140,33.8,0.088,31,0
138
+ 0,100,70,26,50,30.8,0.597,21,0
139
+ 0,93,60,25,92,28.7,0.532,22,0
140
+ 0,129,80,0,0,31.2,0.703,29,0
141
+ 5,105,72,29,325,36.9,0.159,28,0
142
+ 3,128,78,0,0,21.1,0.268,55,0
143
+ 5,106,82,30,0,39.5,0.286,38,0
144
+ 2,108,52,26,63,32.5,0.318,22,0
145
+ 10,108,66,0,0,32.4,0.272,42,1
146
+ 4,154,62,31,284,32.8,0.237,23,0
147
+ 0,102,75,23,0,0,0.572,21,0
148
+ 9,57,80,37,0,32.8,0.096,41,0
149
+ 2,106,64,35,119,30.5,1.4,34,0
150
+ 5,147,78,0,0,33.7,0.218,65,0
151
+ 2,90,70,17,0,27.3,0.085,22,0
152
+ 1,136,74,50,204,37.4,0.399,24,0
153
+ 4,114,65,0,0,21.9,0.432,37,0
154
+ 9,156,86,28,155,34.3,1.189,42,1
155
+ 1,153,82,42,485,40.6,0.687,23,0
156
+ 8,188,78,0,0,47.9,0.137,43,1
157
+ 7,152,88,44,0,50,0.337,36,1
158
+ 2,99,52,15,94,24.6,0.637,21,0
159
+ 1,109,56,21,135,25.2,0.833,23,0
160
+ 2,88,74,19,53,29,0.229,22,0
161
+ 17,163,72,41,114,40.9,0.817,47,1
162
+ 4,151,90,38,0,29.7,0.294,36,0
163
+ 7,102,74,40,105,37.2,0.204,45,0
164
+ 0,114,80,34,285,44.2,0.167,27,0
165
+ 2,100,64,23,0,29.7,0.368,21,0
166
+ 0,131,88,0,0,31.6,0.743,32,1
167
+ 6,104,74,18,156,29.9,0.722,41,1
168
+ 3,148,66,25,0,32.5,0.256,22,0
169
+ 4,120,68,0,0,29.6,0.709,34,0
170
+ 4,110,66,0,0,31.9,0.471,29,0
171
+ 3,111,90,12,78,28.4,0.495,29,0
172
+ 6,102,82,0,0,30.8,0.18,36,1
173
+ 6,134,70,23,130,35.4,0.542,29,1
174
+ 2,87,0,23,0,28.9,0.773,25,0
175
+ 1,79,60,42,48,43.5,0.678,23,0
176
+ 2,75,64,24,55,29.7,0.37,33,0
177
+ 8,179,72,42,130,32.7,0.719,36,1
178
+ 6,85,78,0,0,31.2,0.382,42,0
179
+ 0,129,110,46,130,67.1,0.319,26,1
180
+ 5,143,78,0,0,45,0.19,47,0
181
+ 5,130,82,0,0,39.1,0.956,37,1
182
+ 6,87,80,0,0,23.2,0.084,32,0
183
+ 0,119,64,18,92,34.9,0.725,23,0
184
+ 1,0,74,20,23,27.7,0.299,21,0
185
+ 5,73,60,0,0,26.8,0.268,27,0
186
+ 4,141,74,0,0,27.6,0.244,40,0
187
+ 7,194,68,28,0,35.9,0.745,41,1
188
+ 8,181,68,36,495,30.1,0.615,60,1
189
+ 1,128,98,41,58,32,1.321,33,1
190
+ 8,109,76,39,114,27.9,0.64,31,1
191
+ 5,139,80,35,160,31.6,0.361,25,1
192
+ 3,111,62,0,0,22.6,0.142,21,0
193
+ 9,123,70,44,94,33.1,0.374,40,0
194
+ 7,159,66,0,0,30.4,0.383,36,1
195
+ 11,135,0,0,0,52.3,0.578,40,1
196
+ 8,85,55,20,0,24.4,0.136,42,0
197
+ 5,158,84,41,210,39.4,0.395,29,1
198
+ 1,105,58,0,0,24.3,0.187,21,0
199
+ 3,107,62,13,48,22.9,0.678,23,1
200
+ 4,109,64,44,99,34.8,0.905,26,1
201
+ 4,148,60,27,318,30.9,0.15,29,1
202
+ 0,113,80,16,0,31,0.874,21,0
203
+ 1,138,82,0,0,40.1,0.236,28,0
204
+ 0,108,68,20,0,27.3,0.787,32,0
205
+ 2,99,70,16,44,20.4,0.235,27,0
206
+ 6,103,72,32,190,37.7,0.324,55,0
207
+ 5,111,72,28,0,23.9,0.407,27,0
208
+ 8,196,76,29,280,37.5,0.605,57,1
209
+ 5,162,104,0,0,37.7,0.151,52,1
210
+ 1,96,64,27,87,33.2,0.289,21,0
211
+ 7,184,84,33,0,35.5,0.355,41,1
212
+ 2,81,60,22,0,27.7,0.29,25,0
213
+ 0,147,85,54,0,42.8,0.375,24,0
214
+ 7,179,95,31,0,34.2,0.164,60,0
215
+ 0,140,65,26,130,42.6,0.431,24,1
216
+ 9,112,82,32,175,34.2,0.26,36,1
217
+ 12,151,70,40,271,41.8,0.742,38,1
218
+ 5,109,62,41,129,35.8,0.514,25,1
219
+ 6,125,68,30,120,30,0.464,32,0
220
+ 5,85,74,22,0,29,1.224,32,1
221
+ 5,112,66,0,0,37.8,0.261,41,1
222
+ 0,177,60,29,478,34.6,1.072,21,1
223
+ 2,158,90,0,0,31.6,0.805,66,1
224
+ 7,119,0,0,0,25.2,0.209,37,0
225
+ 7,142,60,33,190,28.8,0.687,61,0
226
+ 1,100,66,15,56,23.6,0.666,26,0
227
+ 1,87,78,27,32,34.6,0.101,22,0
228
+ 0,101,76,0,0,35.7,0.198,26,0
229
+ 3,162,52,38,0,37.2,0.652,24,1
230
+ 4,197,70,39,744,36.7,2.329,31,0
231
+ 0,117,80,31,53,45.2,0.089,24,0
232
+ 4,142,86,0,0,44,0.645,22,1
233
+ 6,134,80,37,370,46.2,0.238,46,1
234
+ 1,79,80,25,37,25.4,0.583,22,0
235
+ 4,122,68,0,0,35,0.394,29,0
236
+ 3,74,68,28,45,29.7,0.293,23,0
237
+ 4,171,72,0,0,43.6,0.479,26,1
238
+ 7,181,84,21,192,35.9,0.586,51,1
239
+ 0,179,90,27,0,44.1,0.686,23,1
240
+ 9,164,84,21,0,30.8,0.831,32,1
241
+ 0,104,76,0,0,18.4,0.582,27,0
242
+ 1,91,64,24,0,29.2,0.192,21,0
243
+ 4,91,70,32,88,33.1,0.446,22,0
244
+ 3,139,54,0,0,25.6,0.402,22,1
245
+ 6,119,50,22,176,27.1,1.318,33,1
246
+ 2,146,76,35,194,38.2,0.329,29,0
247
+ 9,184,85,15,0,30,1.213,49,1
248
+ 10,122,68,0,0,31.2,0.258,41,0
249
+ 0,165,90,33,680,52.3,0.427,23,0
250
+ 9,124,70,33,402,35.4,0.282,34,0
251
+ 1,111,86,19,0,30.1,0.143,23,0
252
+ 9,106,52,0,0,31.2,0.38,42,0
253
+ 2,129,84,0,0,28,0.284,27,0
254
+ 2,90,80,14,55,24.4,0.249,24,0
255
+ 0,86,68,32,0,35.8,0.238,25,0
256
+ 12,92,62,7,258,27.6,0.926,44,1
257
+ 1,113,64,35,0,33.6,0.543,21,1
258
+ 3,111,56,39,0,30.1,0.557,30,0
259
+ 2,114,68,22,0,28.7,0.092,25,0
260
+ 1,193,50,16,375,25.9,0.655,24,0
261
+ 11,155,76,28,150,33.3,1.353,51,1
262
+ 3,191,68,15,130,30.9,0.299,34,0
263
+ 3,141,0,0,0,30,0.761,27,1
264
+ 4,95,70,32,0,32.1,0.612,24,0
265
+ 3,142,80,15,0,32.4,0.2,63,0
266
+ 4,123,62,0,0,32,0.226,35,1
267
+ 5,96,74,18,67,33.6,0.997,43,0
268
+ 0,138,0,0,0,36.3,0.933,25,1
269
+ 2,128,64,42,0,40,1.101,24,0
270
+ 0,102,52,0,0,25.1,0.078,21,0
271
+ 2,146,0,0,0,27.5,0.24,28,1
272
+ 10,101,86,37,0,45.6,1.136,38,1
273
+ 2,108,62,32,56,25.2,0.128,21,0
274
+ 3,122,78,0,0,23,0.254,40,0
275
+ 1,71,78,50,45,33.2,0.422,21,0
276
+ 13,106,70,0,0,34.2,0.251,52,0
277
+ 2,100,70,52,57,40.5,0.677,25,0
278
+ 7,106,60,24,0,26.5,0.296,29,1
279
+ 0,104,64,23,116,27.8,0.454,23,0
280
+ 5,114,74,0,0,24.9,0.744,57,0
281
+ 2,108,62,10,278,25.3,0.881,22,0
282
+ 0,146,70,0,0,37.9,0.334,28,1
283
+ 10,129,76,28,122,35.9,0.28,39,0
284
+ 7,133,88,15,155,32.4,0.262,37,0
285
+ 7,161,86,0,0,30.4,0.165,47,1
286
+ 2,108,80,0,0,27,0.259,52,1
287
+ 7,136,74,26,135,26,0.647,51,0
288
+ 5,155,84,44,545,38.7,0.619,34,0
289
+ 1,119,86,39,220,45.6,0.808,29,1
290
+ 4,96,56,17,49,20.8,0.34,26,0
291
+ 5,108,72,43,75,36.1,0.263,33,0
292
+ 0,78,88,29,40,36.9,0.434,21,0
293
+ 0,107,62,30,74,36.6,0.757,25,1
294
+ 2,128,78,37,182,43.3,1.224,31,1
295
+ 1,128,48,45,194,40.5,0.613,24,1
296
+ 0,161,50,0,0,21.9,0.254,65,0
297
+ 6,151,62,31,120,35.5,0.692,28,0
298
+ 2,146,70,38,360,28,0.337,29,1
299
+ 0,126,84,29,215,30.7,0.52,24,0
300
+ 14,100,78,25,184,36.6,0.412,46,1
301
+ 8,112,72,0,0,23.6,0.84,58,0
302
+ 0,167,0,0,0,32.3,0.839,30,1
303
+ 2,144,58,33,135,31.6,0.422,25,1
304
+ 5,77,82,41,42,35.8,0.156,35,0
305
+ 5,115,98,0,0,52.9,0.209,28,1
306
+ 3,150,76,0,0,21,0.207,37,0
307
+ 2,120,76,37,105,39.7,0.215,29,0
308
+ 10,161,68,23,132,25.5,0.326,47,1
309
+ 0,137,68,14,148,24.8,0.143,21,0
310
+ 0,128,68,19,180,30.5,1.391,25,1
311
+ 2,124,68,28,205,32.9,0.875,30,1
312
+ 6,80,66,30,0,26.2,0.313,41,0
313
+ 0,106,70,37,148,39.4,0.605,22,0
314
+ 2,155,74,17,96,26.6,0.433,27,1
315
+ 3,113,50,10,85,29.5,0.626,25,0
316
+ 7,109,80,31,0,35.9,1.127,43,1
317
+ 2,112,68,22,94,34.1,0.315,26,0
318
+ 3,99,80,11,64,19.3,0.284,30,0
319
+ 3,182,74,0,0,30.5,0.345,29,1
320
+ 3,115,66,39,140,38.1,0.15,28,0
321
+ 6,194,78,0,0,23.5,0.129,59,1
322
+ 4,129,60,12,231,27.5,0.527,31,0
323
+ 3,112,74,30,0,31.6,0.197,25,1
324
+ 0,124,70,20,0,27.4,0.254,36,1
325
+ 13,152,90,33,29,26.8,0.731,43,1
326
+ 2,112,75,32,0,35.7,0.148,21,0
327
+ 1,157,72,21,168,25.6,0.123,24,0
328
+ 1,122,64,32,156,35.1,0.692,30,1
329
+ 10,179,70,0,0,35.1,0.2,37,0
330
+ 2,102,86,36,120,45.5,0.127,23,1
331
+ 6,105,70,32,68,30.8,0.122,37,0
332
+ 8,118,72,19,0,23.1,1.476,46,0
333
+ 2,87,58,16,52,32.7,0.166,25,0
334
+ 1,180,0,0,0,43.3,0.282,41,1
335
+ 12,106,80,0,0,23.6,0.137,44,0
336
+ 1,95,60,18,58,23.9,0.26,22,0
337
+ 0,165,76,43,255,47.9,0.259,26,0
338
+ 0,117,0,0,0,33.8,0.932,44,0
339
+ 5,115,76,0,0,31.2,0.343,44,1
340
+ 9,152,78,34,171,34.2,0.893,33,1
341
+ 7,178,84,0,0,39.9,0.331,41,1
342
+ 1,130,70,13,105,25.9,0.472,22,0
343
+ 1,95,74,21,73,25.9,0.673,36,0
344
+ 1,0,68,35,0,32,0.389,22,0
345
+ 5,122,86,0,0,34.7,0.29,33,0
346
+ 8,95,72,0,0,36.8,0.485,57,0
347
+ 8,126,88,36,108,38.5,0.349,49,0
348
+ 1,139,46,19,83,28.7,0.654,22,0
349
+ 3,116,0,0,0,23.5,0.187,23,0
350
+ 3,99,62,19,74,21.8,0.279,26,0
351
+ 5,0,80,32,0,41,0.346,37,1
352
+ 4,92,80,0,0,42.2,0.237,29,0
353
+ 4,137,84,0,0,31.2,0.252,30,0
354
+ 3,61,82,28,0,34.4,0.243,46,0
355
+ 1,90,62,12,43,27.2,0.58,24,0
356
+ 3,90,78,0,0,42.7,0.559,21,0
357
+ 9,165,88,0,0,30.4,0.302,49,1
358
+ 1,125,50,40,167,33.3,0.962,28,1
359
+ 13,129,0,30,0,39.9,0.569,44,1
360
+ 12,88,74,40,54,35.3,0.378,48,0
361
+ 1,196,76,36,249,36.5,0.875,29,1
362
+ 5,189,64,33,325,31.2,0.583,29,1
363
+ 5,158,70,0,0,29.8,0.207,63,0
364
+ 5,103,108,37,0,39.2,0.305,65,0
365
+ 4,146,78,0,0,38.5,0.52,67,1
366
+ 4,147,74,25,293,34.9,0.385,30,0
367
+ 5,99,54,28,83,34,0.499,30,0
368
+ 6,124,72,0,0,27.6,0.368,29,1
369
+ 0,101,64,17,0,21,0.252,21,0
370
+ 3,81,86,16,66,27.5,0.306,22,0
371
+ 1,133,102,28,140,32.8,0.234,45,1
372
+ 3,173,82,48,465,38.4,2.137,25,1
373
+ 0,118,64,23,89,0,1.731,21,0
374
+ 0,84,64,22,66,35.8,0.545,21,0
375
+ 2,105,58,40,94,34.9,0.225,25,0
376
+ 2,122,52,43,158,36.2,0.816,28,0
377
+ 12,140,82,43,325,39.2,0.528,58,1
378
+ 0,98,82,15,84,25.2,0.299,22,0
379
+ 1,87,60,37,75,37.2,0.509,22,0
380
+ 4,156,75,0,0,48.3,0.238,32,1
381
+ 0,93,100,39,72,43.4,1.021,35,0
382
+ 1,107,72,30,82,30.8,0.821,24,0
383
+ 0,105,68,22,0,20,0.236,22,0
384
+ 1,109,60,8,182,25.4,0.947,21,0
385
+ 1,90,62,18,59,25.1,1.268,25,0
386
+ 1,125,70,24,110,24.3,0.221,25,0
387
+ 1,119,54,13,50,22.3,0.205,24,0
388
+ 5,116,74,29,0,32.3,0.66,35,1
389
+ 8,105,100,36,0,43.3,0.239,45,1
390
+ 5,144,82,26,285,32,0.452,58,1
391
+ 3,100,68,23,81,31.6,0.949,28,0
392
+ 1,100,66,29,196,32,0.444,42,0
393
+ 5,166,76,0,0,45.7,0.34,27,1
394
+ 1,131,64,14,415,23.7,0.389,21,0
395
+ 4,116,72,12,87,22.1,0.463,37,0
396
+ 4,158,78,0,0,32.9,0.803,31,1
397
+ 2,127,58,24,275,27.7,1.6,25,0
398
+ 3,96,56,34,115,24.7,0.944,39,0
399
+ 0,131,66,40,0,34.3,0.196,22,1
400
+ 3,82,70,0,0,21.1,0.389,25,0
401
+ 3,193,70,31,0,34.9,0.241,25,1
402
+ 4,95,64,0,0,32,0.161,31,1
403
+ 6,137,61,0,0,24.2,0.151,55,0
404
+ 5,136,84,41,88,35,0.286,35,1
405
+ 9,72,78,25,0,31.6,0.28,38,0
406
+ 5,168,64,0,0,32.9,0.135,41,1
407
+ 2,123,48,32,165,42.1,0.52,26,0
408
+ 4,115,72,0,0,28.9,0.376,46,1
409
+ 0,101,62,0,0,21.9,0.336,25,0
410
+ 8,197,74,0,0,25.9,1.191,39,1
411
+ 1,172,68,49,579,42.4,0.702,28,1
412
+ 6,102,90,39,0,35.7,0.674,28,0
413
+ 1,112,72,30,176,34.4,0.528,25,0
414
+ 1,143,84,23,310,42.4,1.076,22,0
415
+ 1,143,74,22,61,26.2,0.256,21,0
416
+ 0,138,60,35,167,34.6,0.534,21,1
417
+ 3,173,84,33,474,35.7,0.258,22,1
418
+ 1,97,68,21,0,27.2,1.095,22,0
419
+ 4,144,82,32,0,38.5,0.554,37,1
420
+ 1,83,68,0,0,18.2,0.624,27,0
421
+ 3,129,64,29,115,26.4,0.219,28,1
422
+ 1,119,88,41,170,45.3,0.507,26,0
423
+ 2,94,68,18,76,26,0.561,21,0
424
+ 0,102,64,46,78,40.6,0.496,21,0
425
+ 2,115,64,22,0,30.8,0.421,21,0
426
+ 8,151,78,32,210,42.9,0.516,36,1
427
+ 4,184,78,39,277,37,0.264,31,1
428
+ 0,94,0,0,0,0,0.256,25,0
429
+ 1,181,64,30,180,34.1,0.328,38,1
430
+ 0,135,94,46,145,40.6,0.284,26,0
431
+ 1,95,82,25,180,35,0.233,43,1
432
+ 2,99,0,0,0,22.2,0.108,23,0
433
+ 3,89,74,16,85,30.4,0.551,38,0
434
+ 1,80,74,11,60,30,0.527,22,0
435
+ 2,139,75,0,0,25.6,0.167,29,0
436
+ 1,90,68,8,0,24.5,1.138,36,0
437
+ 0,141,0,0,0,42.4,0.205,29,1
438
+ 12,140,85,33,0,37.4,0.244,41,0
439
+ 5,147,75,0,0,29.9,0.434,28,0
440
+ 1,97,70,15,0,18.2,0.147,21,0
441
+ 6,107,88,0,0,36.8,0.727,31,0
442
+ 0,189,104,25,0,34.3,0.435,41,1
443
+ 2,83,66,23,50,32.2,0.497,22,0
444
+ 4,117,64,27,120,33.2,0.23,24,0
445
+ 8,108,70,0,0,30.5,0.955,33,1
446
+ 4,117,62,12,0,29.7,0.38,30,1
447
+ 0,180,78,63,14,59.4,2.42,25,1
448
+ 1,100,72,12,70,25.3,0.658,28,0
449
+ 0,95,80,45,92,36.5,0.33,26,0
450
+ 0,104,64,37,64,33.6,0.51,22,1
451
+ 0,120,74,18,63,30.5,0.285,26,0
452
+ 1,82,64,13,95,21.2,0.415,23,0
453
+ 2,134,70,0,0,28.9,0.542,23,1
454
+ 0,91,68,32,210,39.9,0.381,25,0
455
+ 2,119,0,0,0,19.6,0.832,72,0
456
+ 2,100,54,28,105,37.8,0.498,24,0
457
+ 14,175,62,30,0,33.6,0.212,38,1
458
+ 1,135,54,0,0,26.7,0.687,62,0
459
+ 5,86,68,28,71,30.2,0.364,24,0
460
+ 10,148,84,48,237,37.6,1.001,51,1
461
+ 9,134,74,33,60,25.9,0.46,81,0
462
+ 9,120,72,22,56,20.8,0.733,48,0
463
+ 1,71,62,0,0,21.8,0.416,26,0
464
+ 8,74,70,40,49,35.3,0.705,39,0
465
+ 5,88,78,30,0,27.6,0.258,37,0
466
+ 10,115,98,0,0,24,1.022,34,0
467
+ 0,124,56,13,105,21.8,0.452,21,0
468
+ 0,74,52,10,36,27.8,0.269,22,0
469
+ 0,97,64,36,100,36.8,0.6,25,0
470
+ 8,120,0,0,0,30,0.183,38,1
471
+ 6,154,78,41,140,46.1,0.571,27,0
472
+ 1,144,82,40,0,41.3,0.607,28,0
473
+ 0,137,70,38,0,33.2,0.17,22,0
474
+ 0,119,66,27,0,38.8,0.259,22,0
475
+ 7,136,90,0,0,29.9,0.21,50,0
476
+ 4,114,64,0,0,28.9,0.126,24,0
477
+ 0,137,84,27,0,27.3,0.231,59,0
478
+ 2,105,80,45,191,33.7,0.711,29,1
479
+ 7,114,76,17,110,23.8,0.466,31,0
480
+ 8,126,74,38,75,25.9,0.162,39,0
481
+ 4,132,86,31,0,28,0.419,63,0
482
+ 3,158,70,30,328,35.5,0.344,35,1
483
+ 0,123,88,37,0,35.2,0.197,29,0
484
+ 4,85,58,22,49,27.8,0.306,28,0
485
+ 0,84,82,31,125,38.2,0.233,23,0
486
+ 0,145,0,0,0,44.2,0.63,31,1
487
+ 0,135,68,42,250,42.3,0.365,24,1
488
+ 1,139,62,41,480,40.7,0.536,21,0
489
+ 0,173,78,32,265,46.5,1.159,58,0
490
+ 4,99,72,17,0,25.6,0.294,28,0
491
+ 8,194,80,0,0,26.1,0.551,67,0
492
+ 2,83,65,28,66,36.8,0.629,24,0
493
+ 2,89,90,30,0,33.5,0.292,42,0
494
+ 4,99,68,38,0,32.8,0.145,33,0
495
+ 4,125,70,18,122,28.9,1.144,45,1
496
+ 3,80,0,0,0,0,0.174,22,0
497
+ 6,166,74,0,0,26.6,0.304,66,0
498
+ 5,110,68,0,0,26,0.292,30,0
499
+ 2,81,72,15,76,30.1,0.547,25,0
500
+ 7,195,70,33,145,25.1,0.163,55,1
501
+ 6,154,74,32,193,29.3,0.839,39,0
502
+ 2,117,90,19,71,25.2,0.313,21,0
503
+ 3,84,72,32,0,37.2,0.267,28,0
504
+ 6,0,68,41,0,39,0.727,41,1
505
+ 7,94,64,25,79,33.3,0.738,41,0
506
+ 3,96,78,39,0,37.3,0.238,40,0
507
+ 10,75,82,0,0,33.3,0.263,38,0
508
+ 0,180,90,26,90,36.5,0.314,35,1
509
+ 1,130,60,23,170,28.6,0.692,21,0
510
+ 2,84,50,23,76,30.4,0.968,21,0
511
+ 8,120,78,0,0,25,0.409,64,0
512
+ 12,84,72,31,0,29.7,0.297,46,1
513
+ 0,139,62,17,210,22.1,0.207,21,0
514
+ 9,91,68,0,0,24.2,0.2,58,0
515
+ 2,91,62,0,0,27.3,0.525,22,0
516
+ 3,99,54,19,86,25.6,0.154,24,0
517
+ 3,163,70,18,105,31.6,0.268,28,1
518
+ 9,145,88,34,165,30.3,0.771,53,1
519
+ 7,125,86,0,0,37.6,0.304,51,0
520
+ 13,76,60,0,0,32.8,0.18,41,0
521
+ 6,129,90,7,326,19.6,0.582,60,0
522
+ 2,68,70,32,66,25,0.187,25,0
523
+ 3,124,80,33,130,33.2,0.305,26,0
524
+ 6,114,0,0,0,0,0.189,26,0
525
+ 9,130,70,0,0,34.2,0.652,45,1
526
+ 3,125,58,0,0,31.6,0.151,24,0
527
+ 3,87,60,18,0,21.8,0.444,21,0
528
+ 1,97,64,19,82,18.2,0.299,21,0
529
+ 3,116,74,15,105,26.3,0.107,24,0
530
+ 0,117,66,31,188,30.8,0.493,22,0
531
+ 0,111,65,0,0,24.6,0.66,31,0
532
+ 2,122,60,18,106,29.8,0.717,22,0
533
+ 0,107,76,0,0,45.3,0.686,24,0
534
+ 1,86,66,52,65,41.3,0.917,29,0
535
+ 6,91,0,0,0,29.8,0.501,31,0
536
+ 1,77,56,30,56,33.3,1.251,24,0
537
+ 4,132,0,0,0,32.9,0.302,23,1
538
+ 0,105,90,0,0,29.6,0.197,46,0
539
+ 0,57,60,0,0,21.7,0.735,67,0
540
+ 0,127,80,37,210,36.3,0.804,23,0
541
+ 3,129,92,49,155,36.4,0.968,32,1
542
+ 8,100,74,40,215,39.4,0.661,43,1
543
+ 3,128,72,25,190,32.4,0.549,27,1
544
+ 10,90,85,32,0,34.9,0.825,56,1
545
+ 4,84,90,23,56,39.5,0.159,25,0
546
+ 1,88,78,29,76,32,0.365,29,0
547
+ 8,186,90,35,225,34.5,0.423,37,1
548
+ 5,187,76,27,207,43.6,1.034,53,1
549
+ 4,131,68,21,166,33.1,0.16,28,0
550
+ 1,164,82,43,67,32.8,0.341,50,0
551
+ 4,189,110,31,0,28.5,0.68,37,0
552
+ 1,116,70,28,0,27.4,0.204,21,0
553
+ 3,84,68,30,106,31.9,0.591,25,0
554
+ 6,114,88,0,0,27.8,0.247,66,0
555
+ 1,88,62,24,44,29.9,0.422,23,0
556
+ 1,84,64,23,115,36.9,0.471,28,0
557
+ 7,124,70,33,215,25.5,0.161,37,0
558
+ 1,97,70,40,0,38.1,0.218,30,0
559
+ 8,110,76,0,0,27.8,0.237,58,0
560
+ 11,103,68,40,0,46.2,0.126,42,0
561
+ 11,85,74,0,0,30.1,0.3,35,0
562
+ 6,125,76,0,0,33.8,0.121,54,1
563
+ 0,198,66,32,274,41.3,0.502,28,1
564
+ 1,87,68,34,77,37.6,0.401,24,0
565
+ 6,99,60,19,54,26.9,0.497,32,0
566
+ 0,91,80,0,0,32.4,0.601,27,0
567
+ 2,95,54,14,88,26.1,0.748,22,0
568
+ 1,99,72,30,18,38.6,0.412,21,0
569
+ 6,92,62,32,126,32,0.085,46,0
570
+ 4,154,72,29,126,31.3,0.338,37,0
571
+ 0,121,66,30,165,34.3,0.203,33,1
572
+ 3,78,70,0,0,32.5,0.27,39,0
573
+ 2,130,96,0,0,22.6,0.268,21,0
574
+ 3,111,58,31,44,29.5,0.43,22,0
575
+ 2,98,60,17,120,34.7,0.198,22,0
576
+ 1,143,86,30,330,30.1,0.892,23,0
577
+ 1,119,44,47,63,35.5,0.28,25,0
578
+ 6,108,44,20,130,24,0.813,35,0
579
+ 2,118,80,0,0,42.9,0.693,21,1
580
+ 10,133,68,0,0,27,0.245,36,0
581
+ 2,197,70,99,0,34.7,0.575,62,1
582
+ 0,151,90,46,0,42.1,0.371,21,1
583
+ 6,109,60,27,0,25,0.206,27,0
584
+ 12,121,78,17,0,26.5,0.259,62,0
585
+ 8,100,76,0,0,38.7,0.19,42,0
586
+ 8,124,76,24,600,28.7,0.687,52,1
587
+ 1,93,56,11,0,22.5,0.417,22,0
588
+ 8,143,66,0,0,34.9,0.129,41,1
589
+ 6,103,66,0,0,24.3,0.249,29,0
590
+ 3,176,86,27,156,33.3,1.154,52,1
591
+ 0,73,0,0,0,21.1,0.342,25,0
592
+ 11,111,84,40,0,46.8,0.925,45,1
593
+ 2,112,78,50,140,39.4,0.175,24,0
594
+ 3,132,80,0,0,34.4,0.402,44,1
595
+ 2,82,52,22,115,28.5,1.699,25,0
596
+ 6,123,72,45,230,33.6,0.733,34,0
597
+ 0,188,82,14,185,32,0.682,22,1
598
+ 0,67,76,0,0,45.3,0.194,46,0
599
+ 1,89,24,19,25,27.8,0.559,21,0
600
+ 1,173,74,0,0,36.8,0.088,38,1
601
+ 1,109,38,18,120,23.1,0.407,26,0
602
+ 1,108,88,19,0,27.1,0.4,24,0
603
+ 6,96,0,0,0,23.7,0.19,28,0
604
+ 1,124,74,36,0,27.8,0.1,30,0
605
+ 7,150,78,29,126,35.2,0.692,54,1
606
+ 4,183,0,0,0,28.4,0.212,36,1
607
+ 1,124,60,32,0,35.8,0.514,21,0
608
+ 1,181,78,42,293,40,1.258,22,1
609
+ 1,92,62,25,41,19.5,0.482,25,0
610
+ 0,152,82,39,272,41.5,0.27,27,0
611
+ 1,111,62,13,182,24,0.138,23,0
612
+ 3,106,54,21,158,30.9,0.292,24,0
613
+ 3,174,58,22,194,32.9,0.593,36,1
614
+ 7,168,88,42,321,38.2,0.787,40,1
615
+ 6,105,80,28,0,32.5,0.878,26,0
616
+ 11,138,74,26,144,36.1,0.557,50,1
617
+ 3,106,72,0,0,25.8,0.207,27,0
618
+ 6,117,96,0,0,28.7,0.157,30,0
619
+ 2,68,62,13,15,20.1,0.257,23,0
620
+ 9,112,82,24,0,28.2,1.282,50,1
621
+ 0,119,0,0,0,32.4,0.141,24,1
622
+ 2,112,86,42,160,38.4,0.246,28,0
623
+ 2,92,76,20,0,24.2,1.698,28,0
624
+ 6,183,94,0,0,40.8,1.461,45,0
625
+ 0,94,70,27,115,43.5,0.347,21,0
626
+ 2,108,64,0,0,30.8,0.158,21,0
627
+ 4,90,88,47,54,37.7,0.362,29,0
628
+ 0,125,68,0,0,24.7,0.206,21,0
629
+ 0,132,78,0,0,32.4,0.393,21,0
630
+ 5,128,80,0,0,34.6,0.144,45,0
631
+ 4,94,65,22,0,24.7,0.148,21,0
632
+ 7,114,64,0,0,27.4,0.732,34,1
633
+ 0,102,78,40,90,34.5,0.238,24,0
634
+ 2,111,60,0,0,26.2,0.343,23,0
635
+ 1,128,82,17,183,27.5,0.115,22,0
636
+ 10,92,62,0,0,25.9,0.167,31,0
637
+ 13,104,72,0,0,31.2,0.465,38,1
638
+ 5,104,74,0,0,28.8,0.153,48,0
639
+ 2,94,76,18,66,31.6,0.649,23,0
640
+ 7,97,76,32,91,40.9,0.871,32,1
641
+ 1,100,74,12,46,19.5,0.149,28,0
642
+ 0,102,86,17,105,29.3,0.695,27,0
643
+ 4,128,70,0,0,34.3,0.303,24,0
644
+ 6,147,80,0,0,29.5,0.178,50,1
645
+ 4,90,0,0,0,28,0.61,31,0
646
+ 3,103,72,30,152,27.6,0.73,27,0
647
+ 2,157,74,35,440,39.4,0.134,30,0
648
+ 1,167,74,17,144,23.4,0.447,33,1
649
+ 0,179,50,36,159,37.8,0.455,22,1
650
+ 11,136,84,35,130,28.3,0.26,42,1
651
+ 0,107,60,25,0,26.4,0.133,23,0
652
+ 1,91,54,25,100,25.2,0.234,23,0
653
+ 1,117,60,23,106,33.8,0.466,27,0
654
+ 5,123,74,40,77,34.1,0.269,28,0
655
+ 2,120,54,0,0,26.8,0.455,27,0
656
+ 1,106,70,28,135,34.2,0.142,22,0
657
+ 2,155,52,27,540,38.7,0.24,25,1
658
+ 2,101,58,35,90,21.8,0.155,22,0
659
+ 1,120,80,48,200,38.9,1.162,41,0
660
+ 11,127,106,0,0,39,0.19,51,0
661
+ 3,80,82,31,70,34.2,1.292,27,1
662
+ 10,162,84,0,0,27.7,0.182,54,0
663
+ 1,199,76,43,0,42.9,1.394,22,1
664
+ 8,167,106,46,231,37.6,0.165,43,1
665
+ 9,145,80,46,130,37.9,0.637,40,1
666
+ 6,115,60,39,0,33.7,0.245,40,1
667
+ 1,112,80,45,132,34.8,0.217,24,0
668
+ 4,145,82,18,0,32.5,0.235,70,1
669
+ 10,111,70,27,0,27.5,0.141,40,1
670
+ 6,98,58,33,190,34,0.43,43,0
671
+ 9,154,78,30,100,30.9,0.164,45,0
672
+ 6,165,68,26,168,33.6,0.631,49,0
673
+ 1,99,58,10,0,25.4,0.551,21,0
674
+ 10,68,106,23,49,35.5,0.285,47,0
675
+ 3,123,100,35,240,57.3,0.88,22,0
676
+ 8,91,82,0,0,35.6,0.587,68,0
677
+ 6,195,70,0,0,30.9,0.328,31,1
678
+ 9,156,86,0,0,24.8,0.23,53,1
679
+ 0,93,60,0,0,35.3,0.263,25,0
680
+ 3,121,52,0,0,36,0.127,25,1
681
+ 2,101,58,17,265,24.2,0.614,23,0
682
+ 2,56,56,28,45,24.2,0.332,22,0
683
+ 0,162,76,36,0,49.6,0.364,26,1
684
+ 0,95,64,39,105,44.6,0.366,22,0
685
+ 4,125,80,0,0,32.3,0.536,27,1
686
+ 5,136,82,0,0,0,0.64,69,0
687
+ 2,129,74,26,205,33.2,0.591,25,0
688
+ 3,130,64,0,0,23.1,0.314,22,0
689
+ 1,107,50,19,0,28.3,0.181,29,0
690
+ 1,140,74,26,180,24.1,0.828,23,0
691
+ 1,144,82,46,180,46.1,0.335,46,1
692
+ 8,107,80,0,0,24.6,0.856,34,0
693
+ 13,158,114,0,0,42.3,0.257,44,1
694
+ 2,121,70,32,95,39.1,0.886,23,0
695
+ 7,129,68,49,125,38.5,0.439,43,1
696
+ 2,90,60,0,0,23.5,0.191,25,0
697
+ 7,142,90,24,480,30.4,0.128,43,1
698
+ 3,169,74,19,125,29.9,0.268,31,1
699
+ 0,99,0,0,0,25,0.253,22,0
700
+ 4,127,88,11,155,34.5,0.598,28,0
701
+ 4,118,70,0,0,44.5,0.904,26,0
702
+ 2,122,76,27,200,35.9,0.483,26,0
703
+ 6,125,78,31,0,27.6,0.565,49,1
704
+ 1,168,88,29,0,35,0.905,52,1
705
+ 2,129,0,0,0,38.5,0.304,41,0
706
+ 4,110,76,20,100,28.4,0.118,27,0
707
+ 6,80,80,36,0,39.8,0.177,28,0
708
+ 10,115,0,0,0,0,0.261,30,1
709
+ 2,127,46,21,335,34.4,0.176,22,0
710
+ 9,164,78,0,0,32.8,0.148,45,1
711
+ 2,93,64,32,160,38,0.674,23,1
712
+ 3,158,64,13,387,31.2,0.295,24,0
713
+ 5,126,78,27,22,29.6,0.439,40,0
714
+ 10,129,62,36,0,41.2,0.441,38,1
715
+ 0,134,58,20,291,26.4,0.352,21,0
716
+ 3,102,74,0,0,29.5,0.121,32,0
717
+ 7,187,50,33,392,33.9,0.826,34,1
718
+ 3,173,78,39,185,33.8,0.97,31,1
719
+ 10,94,72,18,0,23.1,0.595,56,0
720
+ 1,108,60,46,178,35.5,0.415,24,0
721
+ 5,97,76,27,0,35.6,0.378,52,1
722
+ 4,83,86,19,0,29.3,0.317,34,0
723
+ 1,114,66,36,200,38.1,0.289,21,0
724
+ 1,149,68,29,127,29.3,0.349,42,1
725
+ 5,117,86,30,105,39.1,0.251,42,0
726
+ 1,111,94,0,0,32.8,0.265,45,0
727
+ 4,112,78,40,0,39.4,0.236,38,0
728
+ 1,116,78,29,180,36.1,0.496,25,0
729
+ 0,141,84,26,0,32.4,0.433,22,0
730
+ 2,175,88,0,0,22.9,0.326,22,0
731
+ 2,92,52,0,0,30.1,0.141,22,0
732
+ 3,130,78,23,79,28.4,0.323,34,1
733
+ 8,120,86,0,0,28.4,0.259,22,1
734
+ 2,174,88,37,120,44.5,0.646,24,1
735
+ 2,106,56,27,165,29,0.426,22,0
736
+ 2,105,75,0,0,23.3,0.56,53,0
737
+ 4,95,60,32,0,35.4,0.284,28,0
738
+ 0,126,86,27,120,27.4,0.515,21,0
739
+ 8,65,72,23,0,32,0.6,42,0
740
+ 2,99,60,17,160,36.6,0.453,21,0
741
+ 1,102,74,0,0,39.5,0.293,42,1
742
+ 11,120,80,37,150,42.3,0.785,48,1
743
+ 3,102,44,20,94,30.8,0.4,26,0
744
+ 1,109,58,18,116,28.5,0.219,22,0
745
+ 9,140,94,0,0,32.7,0.734,45,1
746
+ 13,153,88,37,140,40.6,1.174,39,0
747
+ 12,100,84,33,105,30,0.488,46,0
748
+ 1,147,94,41,0,49.3,0.358,27,1
749
+ 1,81,74,41,57,46.3,1.096,32,0
750
+ 3,187,70,22,200,36.4,0.408,36,1
751
+ 6,162,62,0,0,24.3,0.178,50,1
752
+ 4,136,70,0,0,31.2,1.182,22,1
753
+ 1,121,78,39,74,39,0.261,28,0
754
+ 3,108,62,24,0,26,0.223,25,0
755
+ 0,181,88,44,510,43.3,0.222,26,1
756
+ 8,154,78,32,0,32.4,0.443,45,1
757
+ 1,128,88,39,110,36.5,1.057,37,1
758
+ 7,137,90,41,0,32,0.391,39,0
759
+ 0,123,72,0,0,36.3,0.258,52,1
760
+ 1,106,76,0,0,37.5,0.197,26,0
761
+ 6,190,92,0,0,35.5,0.278,66,1
762
+ 2,88,58,26,16,28.4,0.766,22,0
763
+ 9,170,74,31,0,44,0.403,43,1
764
+ 9,89,62,0,0,22.5,0.142,33,0
765
+ 10,101,76,48,180,32.9,0.171,63,0
766
+ 2,122,70,27,0,36.8,0.34,27,0
767
+ 5,121,72,23,112,26.2,0.245,30,0
768
+ 1,126,60,0,0,30.1,0.349,47,1
769
+ 1,93,70,31,0,30.4,0.315,23,0
data_csv/healthcare-dataset-stroke-data copy.csv ADDED
The diff for this file is too large to render. See raw diff
 
data_csv/healthcare-dataset-stroke-data.csv ADDED
The diff for this file is too large to render. See raw diff
 
diabetes/diabetes.csv ADDED
@@ -0,0 +1,769 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age,Outcome
2
+ 6,148,72,35,0,33.6,0.627,50,1
3
+ 1,85,66,29,0,26.6,0.351,31,0
4
+ 8,183,64,0,0,23.3,0.672,32,1
5
+ 1,89,66,23,94,28.1,0.167,21,0
6
+ 0,137,40,35,168,43.1,2.288,33,1
7
+ 5,116,74,0,0,25.6,0.201,30,0
8
+ 3,78,50,32,88,31,0.248,26,1
9
+ 10,115,0,0,0,35.3,0.134,29,0
10
+ 2,197,70,45,543,30.5,0.158,53,1
11
+ 8,125,96,0,0,0,0.232,54,1
12
+ 4,110,92,0,0,37.6,0.191,30,0
13
+ 10,168,74,0,0,38,0.537,34,1
14
+ 10,139,80,0,0,27.1,1.441,57,0
15
+ 1,189,60,23,846,30.1,0.398,59,1
16
+ 5,166,72,19,175,25.8,0.587,51,1
17
+ 7,100,0,0,0,30,0.484,32,1
18
+ 0,118,84,47,230,45.8,0.551,31,1
19
+ 7,107,74,0,0,29.6,0.254,31,1
20
+ 1,103,30,38,83,43.3,0.183,33,0
21
+ 1,115,70,30,96,34.6,0.529,32,1
22
+ 3,126,88,41,235,39.3,0.704,27,0
23
+ 8,99,84,0,0,35.4,0.388,50,0
24
+ 7,196,90,0,0,39.8,0.451,41,1
25
+ 9,119,80,35,0,29,0.263,29,1
26
+ 11,143,94,33,146,36.6,0.254,51,1
27
+ 10,125,70,26,115,31.1,0.205,41,1
28
+ 7,147,76,0,0,39.4,0.257,43,1
29
+ 1,97,66,15,140,23.2,0.487,22,0
30
+ 13,145,82,19,110,22.2,0.245,57,0
31
+ 5,117,92,0,0,34.1,0.337,38,0
32
+ 5,109,75,26,0,36,0.546,60,0
33
+ 3,158,76,36,245,31.6,0.851,28,1
34
+ 3,88,58,11,54,24.8,0.267,22,0
35
+ 6,92,92,0,0,19.9,0.188,28,0
36
+ 10,122,78,31,0,27.6,0.512,45,0
37
+ 4,103,60,33,192,24,0.966,33,0
38
+ 11,138,76,0,0,33.2,0.42,35,0
39
+ 9,102,76,37,0,32.9,0.665,46,1
40
+ 2,90,68,42,0,38.2,0.503,27,1
41
+ 4,111,72,47,207,37.1,1.39,56,1
42
+ 3,180,64,25,70,34,0.271,26,0
43
+ 7,133,84,0,0,40.2,0.696,37,0
44
+ 7,106,92,18,0,22.7,0.235,48,0
45
+ 9,171,110,24,240,45.4,0.721,54,1
46
+ 7,159,64,0,0,27.4,0.294,40,0
47
+ 0,180,66,39,0,42,1.893,25,1
48
+ 1,146,56,0,0,29.7,0.564,29,0
49
+ 2,71,70,27,0,28,0.586,22,0
50
+ 7,103,66,32,0,39.1,0.344,31,1
51
+ 7,105,0,0,0,0,0.305,24,0
52
+ 1,103,80,11,82,19.4,0.491,22,0
53
+ 1,101,50,15,36,24.2,0.526,26,0
54
+ 5,88,66,21,23,24.4,0.342,30,0
55
+ 8,176,90,34,300,33.7,0.467,58,1
56
+ 7,150,66,42,342,34.7,0.718,42,0
57
+ 1,73,50,10,0,23,0.248,21,0
58
+ 7,187,68,39,304,37.7,0.254,41,1
59
+ 0,100,88,60,110,46.8,0.962,31,0
60
+ 0,146,82,0,0,40.5,1.781,44,0
61
+ 0,105,64,41,142,41.5,0.173,22,0
62
+ 2,84,0,0,0,0,0.304,21,0
63
+ 8,133,72,0,0,32.9,0.27,39,1
64
+ 5,44,62,0,0,25,0.587,36,0
65
+ 2,141,58,34,128,25.4,0.699,24,0
66
+ 7,114,66,0,0,32.8,0.258,42,1
67
+ 5,99,74,27,0,29,0.203,32,0
68
+ 0,109,88,30,0,32.5,0.855,38,1
69
+ 2,109,92,0,0,42.7,0.845,54,0
70
+ 1,95,66,13,38,19.6,0.334,25,0
71
+ 4,146,85,27,100,28.9,0.189,27,0
72
+ 2,100,66,20,90,32.9,0.867,28,1
73
+ 5,139,64,35,140,28.6,0.411,26,0
74
+ 13,126,90,0,0,43.4,0.583,42,1
75
+ 4,129,86,20,270,35.1,0.231,23,0
76
+ 1,79,75,30,0,32,0.396,22,0
77
+ 1,0,48,20,0,24.7,0.14,22,0
78
+ 7,62,78,0,0,32.6,0.391,41,0
79
+ 5,95,72,33,0,37.7,0.37,27,0
80
+ 0,131,0,0,0,43.2,0.27,26,1
81
+ 2,112,66,22,0,25,0.307,24,0
82
+ 3,113,44,13,0,22.4,0.14,22,0
83
+ 2,74,0,0,0,0,0.102,22,0
84
+ 7,83,78,26,71,29.3,0.767,36,0
85
+ 0,101,65,28,0,24.6,0.237,22,0
86
+ 5,137,108,0,0,48.8,0.227,37,1
87
+ 2,110,74,29,125,32.4,0.698,27,0
88
+ 13,106,72,54,0,36.6,0.178,45,0
89
+ 2,100,68,25,71,38.5,0.324,26,0
90
+ 15,136,70,32,110,37.1,0.153,43,1
91
+ 1,107,68,19,0,26.5,0.165,24,0
92
+ 1,80,55,0,0,19.1,0.258,21,0
93
+ 4,123,80,15,176,32,0.443,34,0
94
+ 7,81,78,40,48,46.7,0.261,42,0
95
+ 4,134,72,0,0,23.8,0.277,60,1
96
+ 2,142,82,18,64,24.7,0.761,21,0
97
+ 6,144,72,27,228,33.9,0.255,40,0
98
+ 2,92,62,28,0,31.6,0.13,24,0
99
+ 1,71,48,18,76,20.4,0.323,22,0
100
+ 6,93,50,30,64,28.7,0.356,23,0
101
+ 1,122,90,51,220,49.7,0.325,31,1
102
+ 1,163,72,0,0,39,1.222,33,1
103
+ 1,151,60,0,0,26.1,0.179,22,0
104
+ 0,125,96,0,0,22.5,0.262,21,0
105
+ 1,81,72,18,40,26.6,0.283,24,0
106
+ 2,85,65,0,0,39.6,0.93,27,0
107
+ 1,126,56,29,152,28.7,0.801,21,0
108
+ 1,96,122,0,0,22.4,0.207,27,0
109
+ 4,144,58,28,140,29.5,0.287,37,0
110
+ 3,83,58,31,18,34.3,0.336,25,0
111
+ 0,95,85,25,36,37.4,0.247,24,1
112
+ 3,171,72,33,135,33.3,0.199,24,1
113
+ 8,155,62,26,495,34,0.543,46,1
114
+ 1,89,76,34,37,31.2,0.192,23,0
115
+ 4,76,62,0,0,34,0.391,25,0
116
+ 7,160,54,32,175,30.5,0.588,39,1
117
+ 4,146,92,0,0,31.2,0.539,61,1
118
+ 5,124,74,0,0,34,0.22,38,1
119
+ 5,78,48,0,0,33.7,0.654,25,0
120
+ 4,97,60,23,0,28.2,0.443,22,0
121
+ 4,99,76,15,51,23.2,0.223,21,0
122
+ 0,162,76,56,100,53.2,0.759,25,1
123
+ 6,111,64,39,0,34.2,0.26,24,0
124
+ 2,107,74,30,100,33.6,0.404,23,0
125
+ 5,132,80,0,0,26.8,0.186,69,0
126
+ 0,113,76,0,0,33.3,0.278,23,1
127
+ 1,88,30,42,99,55,0.496,26,1
128
+ 3,120,70,30,135,42.9,0.452,30,0
129
+ 1,118,58,36,94,33.3,0.261,23,0
130
+ 1,117,88,24,145,34.5,0.403,40,1
131
+ 0,105,84,0,0,27.9,0.741,62,1
132
+ 4,173,70,14,168,29.7,0.361,33,1
133
+ 9,122,56,0,0,33.3,1.114,33,1
134
+ 3,170,64,37,225,34.5,0.356,30,1
135
+ 8,84,74,31,0,38.3,0.457,39,0
136
+ 2,96,68,13,49,21.1,0.647,26,0
137
+ 2,125,60,20,140,33.8,0.088,31,0
138
+ 0,100,70,26,50,30.8,0.597,21,0
139
+ 0,93,60,25,92,28.7,0.532,22,0
140
+ 0,129,80,0,0,31.2,0.703,29,0
141
+ 5,105,72,29,325,36.9,0.159,28,0
142
+ 3,128,78,0,0,21.1,0.268,55,0
143
+ 5,106,82,30,0,39.5,0.286,38,0
144
+ 2,108,52,26,63,32.5,0.318,22,0
145
+ 10,108,66,0,0,32.4,0.272,42,1
146
+ 4,154,62,31,284,32.8,0.237,23,0
147
+ 0,102,75,23,0,0,0.572,21,0
148
+ 9,57,80,37,0,32.8,0.096,41,0
149
+ 2,106,64,35,119,30.5,1.4,34,0
150
+ 5,147,78,0,0,33.7,0.218,65,0
151
+ 2,90,70,17,0,27.3,0.085,22,0
152
+ 1,136,74,50,204,37.4,0.399,24,0
153
+ 4,114,65,0,0,21.9,0.432,37,0
154
+ 9,156,86,28,155,34.3,1.189,42,1
155
+ 1,153,82,42,485,40.6,0.687,23,0
156
+ 8,188,78,0,0,47.9,0.137,43,1
157
+ 7,152,88,44,0,50,0.337,36,1
158
+ 2,99,52,15,94,24.6,0.637,21,0
159
+ 1,109,56,21,135,25.2,0.833,23,0
160
+ 2,88,74,19,53,29,0.229,22,0
161
+ 17,163,72,41,114,40.9,0.817,47,1
162
+ 4,151,90,38,0,29.7,0.294,36,0
163
+ 7,102,74,40,105,37.2,0.204,45,0
164
+ 0,114,80,34,285,44.2,0.167,27,0
165
+ 2,100,64,23,0,29.7,0.368,21,0
166
+ 0,131,88,0,0,31.6,0.743,32,1
167
+ 6,104,74,18,156,29.9,0.722,41,1
168
+ 3,148,66,25,0,32.5,0.256,22,0
169
+ 4,120,68,0,0,29.6,0.709,34,0
170
+ 4,110,66,0,0,31.9,0.471,29,0
171
+ 3,111,90,12,78,28.4,0.495,29,0
172
+ 6,102,82,0,0,30.8,0.18,36,1
173
+ 6,134,70,23,130,35.4,0.542,29,1
174
+ 2,87,0,23,0,28.9,0.773,25,0
175
+ 1,79,60,42,48,43.5,0.678,23,0
176
+ 2,75,64,24,55,29.7,0.37,33,0
177
+ 8,179,72,42,130,32.7,0.719,36,1
178
+ 6,85,78,0,0,31.2,0.382,42,0
179
+ 0,129,110,46,130,67.1,0.319,26,1
180
+ 5,143,78,0,0,45,0.19,47,0
181
+ 5,130,82,0,0,39.1,0.956,37,1
182
+ 6,87,80,0,0,23.2,0.084,32,0
183
+ 0,119,64,18,92,34.9,0.725,23,0
184
+ 1,0,74,20,23,27.7,0.299,21,0
185
+ 5,73,60,0,0,26.8,0.268,27,0
186
+ 4,141,74,0,0,27.6,0.244,40,0
187
+ 7,194,68,28,0,35.9,0.745,41,1
188
+ 8,181,68,36,495,30.1,0.615,60,1
189
+ 1,128,98,41,58,32,1.321,33,1
190
+ 8,109,76,39,114,27.9,0.64,31,1
191
+ 5,139,80,35,160,31.6,0.361,25,1
192
+ 3,111,62,0,0,22.6,0.142,21,0
193
+ 9,123,70,44,94,33.1,0.374,40,0
194
+ 7,159,66,0,0,30.4,0.383,36,1
195
+ 11,135,0,0,0,52.3,0.578,40,1
196
+ 8,85,55,20,0,24.4,0.136,42,0
197
+ 5,158,84,41,210,39.4,0.395,29,1
198
+ 1,105,58,0,0,24.3,0.187,21,0
199
+ 3,107,62,13,48,22.9,0.678,23,1
200
+ 4,109,64,44,99,34.8,0.905,26,1
201
+ 4,148,60,27,318,30.9,0.15,29,1
202
+ 0,113,80,16,0,31,0.874,21,0
203
+ 1,138,82,0,0,40.1,0.236,28,0
204
+ 0,108,68,20,0,27.3,0.787,32,0
205
+ 2,99,70,16,44,20.4,0.235,27,0
206
+ 6,103,72,32,190,37.7,0.324,55,0
207
+ 5,111,72,28,0,23.9,0.407,27,0
208
+ 8,196,76,29,280,37.5,0.605,57,1
209
+ 5,162,104,0,0,37.7,0.151,52,1
210
+ 1,96,64,27,87,33.2,0.289,21,0
211
+ 7,184,84,33,0,35.5,0.355,41,1
212
+ 2,81,60,22,0,27.7,0.29,25,0
213
+ 0,147,85,54,0,42.8,0.375,24,0
214
+ 7,179,95,31,0,34.2,0.164,60,0
215
+ 0,140,65,26,130,42.6,0.431,24,1
216
+ 9,112,82,32,175,34.2,0.26,36,1
217
+ 12,151,70,40,271,41.8,0.742,38,1
218
+ 5,109,62,41,129,35.8,0.514,25,1
219
+ 6,125,68,30,120,30,0.464,32,0
220
+ 5,85,74,22,0,29,1.224,32,1
221
+ 5,112,66,0,0,37.8,0.261,41,1
222
+ 0,177,60,29,478,34.6,1.072,21,1
223
+ 2,158,90,0,0,31.6,0.805,66,1
224
+ 7,119,0,0,0,25.2,0.209,37,0
225
+ 7,142,60,33,190,28.8,0.687,61,0
226
+ 1,100,66,15,56,23.6,0.666,26,0
227
+ 1,87,78,27,32,34.6,0.101,22,0
228
+ 0,101,76,0,0,35.7,0.198,26,0
229
+ 3,162,52,38,0,37.2,0.652,24,1
230
+ 4,197,70,39,744,36.7,2.329,31,0
231
+ 0,117,80,31,53,45.2,0.089,24,0
232
+ 4,142,86,0,0,44,0.645,22,1
233
+ 6,134,80,37,370,46.2,0.238,46,1
234
+ 1,79,80,25,37,25.4,0.583,22,0
235
+ 4,122,68,0,0,35,0.394,29,0
236
+ 3,74,68,28,45,29.7,0.293,23,0
237
+ 4,171,72,0,0,43.6,0.479,26,1
238
+ 7,181,84,21,192,35.9,0.586,51,1
239
+ 0,179,90,27,0,44.1,0.686,23,1
240
+ 9,164,84,21,0,30.8,0.831,32,1
241
+ 0,104,76,0,0,18.4,0.582,27,0
242
+ 1,91,64,24,0,29.2,0.192,21,0
243
+ 4,91,70,32,88,33.1,0.446,22,0
244
+ 3,139,54,0,0,25.6,0.402,22,1
245
+ 6,119,50,22,176,27.1,1.318,33,1
246
+ 2,146,76,35,194,38.2,0.329,29,0
247
+ 9,184,85,15,0,30,1.213,49,1
248
+ 10,122,68,0,0,31.2,0.258,41,0
249
+ 0,165,90,33,680,52.3,0.427,23,0
250
+ 9,124,70,33,402,35.4,0.282,34,0
251
+ 1,111,86,19,0,30.1,0.143,23,0
252
+ 9,106,52,0,0,31.2,0.38,42,0
253
+ 2,129,84,0,0,28,0.284,27,0
254
+ 2,90,80,14,55,24.4,0.249,24,0
255
+ 0,86,68,32,0,35.8,0.238,25,0
256
+ 12,92,62,7,258,27.6,0.926,44,1
257
+ 1,113,64,35,0,33.6,0.543,21,1
258
+ 3,111,56,39,0,30.1,0.557,30,0
259
+ 2,114,68,22,0,28.7,0.092,25,0
260
+ 1,193,50,16,375,25.9,0.655,24,0
261
+ 11,155,76,28,150,33.3,1.353,51,1
262
+ 3,191,68,15,130,30.9,0.299,34,0
263
+ 3,141,0,0,0,30,0.761,27,1
264
+ 4,95,70,32,0,32.1,0.612,24,0
265
+ 3,142,80,15,0,32.4,0.2,63,0
266
+ 4,123,62,0,0,32,0.226,35,1
267
+ 5,96,74,18,67,33.6,0.997,43,0
268
+ 0,138,0,0,0,36.3,0.933,25,1
269
+ 2,128,64,42,0,40,1.101,24,0
270
+ 0,102,52,0,0,25.1,0.078,21,0
271
+ 2,146,0,0,0,27.5,0.24,28,1
272
+ 10,101,86,37,0,45.6,1.136,38,1
273
+ 2,108,62,32,56,25.2,0.128,21,0
274
+ 3,122,78,0,0,23,0.254,40,0
275
+ 1,71,78,50,45,33.2,0.422,21,0
276
+ 13,106,70,0,0,34.2,0.251,52,0
277
+ 2,100,70,52,57,40.5,0.677,25,0
278
+ 7,106,60,24,0,26.5,0.296,29,1
279
+ 0,104,64,23,116,27.8,0.454,23,0
280
+ 5,114,74,0,0,24.9,0.744,57,0
281
+ 2,108,62,10,278,25.3,0.881,22,0
282
+ 0,146,70,0,0,37.9,0.334,28,1
283
+ 10,129,76,28,122,35.9,0.28,39,0
284
+ 7,133,88,15,155,32.4,0.262,37,0
285
+ 7,161,86,0,0,30.4,0.165,47,1
286
+ 2,108,80,0,0,27,0.259,52,1
287
+ 7,136,74,26,135,26,0.647,51,0
288
+ 5,155,84,44,545,38.7,0.619,34,0
289
+ 1,119,86,39,220,45.6,0.808,29,1
290
+ 4,96,56,17,49,20.8,0.34,26,0
291
+ 5,108,72,43,75,36.1,0.263,33,0
292
+ 0,78,88,29,40,36.9,0.434,21,0
293
+ 0,107,62,30,74,36.6,0.757,25,1
294
+ 2,128,78,37,182,43.3,1.224,31,1
295
+ 1,128,48,45,194,40.5,0.613,24,1
296
+ 0,161,50,0,0,21.9,0.254,65,0
297
+ 6,151,62,31,120,35.5,0.692,28,0
298
+ 2,146,70,38,360,28,0.337,29,1
299
+ 0,126,84,29,215,30.7,0.52,24,0
300
+ 14,100,78,25,184,36.6,0.412,46,1
301
+ 8,112,72,0,0,23.6,0.84,58,0
302
+ 0,167,0,0,0,32.3,0.839,30,1
303
+ 2,144,58,33,135,31.6,0.422,25,1
304
+ 5,77,82,41,42,35.8,0.156,35,0
305
+ 5,115,98,0,0,52.9,0.209,28,1
306
+ 3,150,76,0,0,21,0.207,37,0
307
+ 2,120,76,37,105,39.7,0.215,29,0
308
+ 10,161,68,23,132,25.5,0.326,47,1
309
+ 0,137,68,14,148,24.8,0.143,21,0
310
+ 0,128,68,19,180,30.5,1.391,25,1
311
+ 2,124,68,28,205,32.9,0.875,30,1
312
+ 6,80,66,30,0,26.2,0.313,41,0
313
+ 0,106,70,37,148,39.4,0.605,22,0
314
+ 2,155,74,17,96,26.6,0.433,27,1
315
+ 3,113,50,10,85,29.5,0.626,25,0
316
+ 7,109,80,31,0,35.9,1.127,43,1
317
+ 2,112,68,22,94,34.1,0.315,26,0
318
+ 3,99,80,11,64,19.3,0.284,30,0
319
+ 3,182,74,0,0,30.5,0.345,29,1
320
+ 3,115,66,39,140,38.1,0.15,28,0
321
+ 6,194,78,0,0,23.5,0.129,59,1
322
+ 4,129,60,12,231,27.5,0.527,31,0
323
+ 3,112,74,30,0,31.6,0.197,25,1
324
+ 0,124,70,20,0,27.4,0.254,36,1
325
+ 13,152,90,33,29,26.8,0.731,43,1
326
+ 2,112,75,32,0,35.7,0.148,21,0
327
+ 1,157,72,21,168,25.6,0.123,24,0
328
+ 1,122,64,32,156,35.1,0.692,30,1
329
+ 10,179,70,0,0,35.1,0.2,37,0
330
+ 2,102,86,36,120,45.5,0.127,23,1
331
+ 6,105,70,32,68,30.8,0.122,37,0
332
+ 8,118,72,19,0,23.1,1.476,46,0
333
+ 2,87,58,16,52,32.7,0.166,25,0
334
+ 1,180,0,0,0,43.3,0.282,41,1
335
+ 12,106,80,0,0,23.6,0.137,44,0
336
+ 1,95,60,18,58,23.9,0.26,22,0
337
+ 0,165,76,43,255,47.9,0.259,26,0
338
+ 0,117,0,0,0,33.8,0.932,44,0
339
+ 5,115,76,0,0,31.2,0.343,44,1
340
+ 9,152,78,34,171,34.2,0.893,33,1
341
+ 7,178,84,0,0,39.9,0.331,41,1
342
+ 1,130,70,13,105,25.9,0.472,22,0
343
+ 1,95,74,21,73,25.9,0.673,36,0
344
+ 1,0,68,35,0,32,0.389,22,0
345
+ 5,122,86,0,0,34.7,0.29,33,0
346
+ 8,95,72,0,0,36.8,0.485,57,0
347
+ 8,126,88,36,108,38.5,0.349,49,0
348
+ 1,139,46,19,83,28.7,0.654,22,0
349
+ 3,116,0,0,0,23.5,0.187,23,0
350
+ 3,99,62,19,74,21.8,0.279,26,0
351
+ 5,0,80,32,0,41,0.346,37,1
352
+ 4,92,80,0,0,42.2,0.237,29,0
353
+ 4,137,84,0,0,31.2,0.252,30,0
354
+ 3,61,82,28,0,34.4,0.243,46,0
355
+ 1,90,62,12,43,27.2,0.58,24,0
356
+ 3,90,78,0,0,42.7,0.559,21,0
357
+ 9,165,88,0,0,30.4,0.302,49,1
358
+ 1,125,50,40,167,33.3,0.962,28,1
359
+ 13,129,0,30,0,39.9,0.569,44,1
360
+ 12,88,74,40,54,35.3,0.378,48,0
361
+ 1,196,76,36,249,36.5,0.875,29,1
362
+ 5,189,64,33,325,31.2,0.583,29,1
363
+ 5,158,70,0,0,29.8,0.207,63,0
364
+ 5,103,108,37,0,39.2,0.305,65,0
365
+ 4,146,78,0,0,38.5,0.52,67,1
366
+ 4,147,74,25,293,34.9,0.385,30,0
367
+ 5,99,54,28,83,34,0.499,30,0
368
+ 6,124,72,0,0,27.6,0.368,29,1
369
+ 0,101,64,17,0,21,0.252,21,0
370
+ 3,81,86,16,66,27.5,0.306,22,0
371
+ 1,133,102,28,140,32.8,0.234,45,1
372
+ 3,173,82,48,465,38.4,2.137,25,1
373
+ 0,118,64,23,89,0,1.731,21,0
374
+ 0,84,64,22,66,35.8,0.545,21,0
375
+ 2,105,58,40,94,34.9,0.225,25,0
376
+ 2,122,52,43,158,36.2,0.816,28,0
377
+ 12,140,82,43,325,39.2,0.528,58,1
378
+ 0,98,82,15,84,25.2,0.299,22,0
379
+ 1,87,60,37,75,37.2,0.509,22,0
380
+ 4,156,75,0,0,48.3,0.238,32,1
381
+ 0,93,100,39,72,43.4,1.021,35,0
382
+ 1,107,72,30,82,30.8,0.821,24,0
383
+ 0,105,68,22,0,20,0.236,22,0
384
+ 1,109,60,8,182,25.4,0.947,21,0
385
+ 1,90,62,18,59,25.1,1.268,25,0
386
+ 1,125,70,24,110,24.3,0.221,25,0
387
+ 1,119,54,13,50,22.3,0.205,24,0
388
+ 5,116,74,29,0,32.3,0.66,35,1
389
+ 8,105,100,36,0,43.3,0.239,45,1
390
+ 5,144,82,26,285,32,0.452,58,1
391
+ 3,100,68,23,81,31.6,0.949,28,0
392
+ 1,100,66,29,196,32,0.444,42,0
393
+ 5,166,76,0,0,45.7,0.34,27,1
394
+ 1,131,64,14,415,23.7,0.389,21,0
395
+ 4,116,72,12,87,22.1,0.463,37,0
396
+ 4,158,78,0,0,32.9,0.803,31,1
397
+ 2,127,58,24,275,27.7,1.6,25,0
398
+ 3,96,56,34,115,24.7,0.944,39,0
399
+ 0,131,66,40,0,34.3,0.196,22,1
400
+ 3,82,70,0,0,21.1,0.389,25,0
401
+ 3,193,70,31,0,34.9,0.241,25,1
402
+ 4,95,64,0,0,32,0.161,31,1
403
+ 6,137,61,0,0,24.2,0.151,55,0
404
+ 5,136,84,41,88,35,0.286,35,1
405
+ 9,72,78,25,0,31.6,0.28,38,0
406
+ 5,168,64,0,0,32.9,0.135,41,1
407
+ 2,123,48,32,165,42.1,0.52,26,0
408
+ 4,115,72,0,0,28.9,0.376,46,1
409
+ 0,101,62,0,0,21.9,0.336,25,0
410
+ 8,197,74,0,0,25.9,1.191,39,1
411
+ 1,172,68,49,579,42.4,0.702,28,1
412
+ 6,102,90,39,0,35.7,0.674,28,0
413
+ 1,112,72,30,176,34.4,0.528,25,0
414
+ 1,143,84,23,310,42.4,1.076,22,0
415
+ 1,143,74,22,61,26.2,0.256,21,0
416
+ 0,138,60,35,167,34.6,0.534,21,1
417
+ 3,173,84,33,474,35.7,0.258,22,1
418
+ 1,97,68,21,0,27.2,1.095,22,0
419
+ 4,144,82,32,0,38.5,0.554,37,1
420
+ 1,83,68,0,0,18.2,0.624,27,0
421
+ 3,129,64,29,115,26.4,0.219,28,1
422
+ 1,119,88,41,170,45.3,0.507,26,0
423
+ 2,94,68,18,76,26,0.561,21,0
424
+ 0,102,64,46,78,40.6,0.496,21,0
425
+ 2,115,64,22,0,30.8,0.421,21,0
426
+ 8,151,78,32,210,42.9,0.516,36,1
427
+ 4,184,78,39,277,37,0.264,31,1
428
+ 0,94,0,0,0,0,0.256,25,0
429
+ 1,181,64,30,180,34.1,0.328,38,1
430
+ 0,135,94,46,145,40.6,0.284,26,0
431
+ 1,95,82,25,180,35,0.233,43,1
432
+ 2,99,0,0,0,22.2,0.108,23,0
433
+ 3,89,74,16,85,30.4,0.551,38,0
434
+ 1,80,74,11,60,30,0.527,22,0
435
+ 2,139,75,0,0,25.6,0.167,29,0
436
+ 1,90,68,8,0,24.5,1.138,36,0
437
+ 0,141,0,0,0,42.4,0.205,29,1
438
+ 12,140,85,33,0,37.4,0.244,41,0
439
+ 5,147,75,0,0,29.9,0.434,28,0
440
+ 1,97,70,15,0,18.2,0.147,21,0
441
+ 6,107,88,0,0,36.8,0.727,31,0
442
+ 0,189,104,25,0,34.3,0.435,41,1
443
+ 2,83,66,23,50,32.2,0.497,22,0
444
+ 4,117,64,27,120,33.2,0.23,24,0
445
+ 8,108,70,0,0,30.5,0.955,33,1
446
+ 4,117,62,12,0,29.7,0.38,30,1
447
+ 0,180,78,63,14,59.4,2.42,25,1
448
+ 1,100,72,12,70,25.3,0.658,28,0
449
+ 0,95,80,45,92,36.5,0.33,26,0
450
+ 0,104,64,37,64,33.6,0.51,22,1
451
+ 0,120,74,18,63,30.5,0.285,26,0
452
+ 1,82,64,13,95,21.2,0.415,23,0
453
+ 2,134,70,0,0,28.9,0.542,23,1
454
+ 0,91,68,32,210,39.9,0.381,25,0
455
+ 2,119,0,0,0,19.6,0.832,72,0
456
+ 2,100,54,28,105,37.8,0.498,24,0
457
+ 14,175,62,30,0,33.6,0.212,38,1
458
+ 1,135,54,0,0,26.7,0.687,62,0
459
+ 5,86,68,28,71,30.2,0.364,24,0
460
+ 10,148,84,48,237,37.6,1.001,51,1
461
+ 9,134,74,33,60,25.9,0.46,81,0
462
+ 9,120,72,22,56,20.8,0.733,48,0
463
+ 1,71,62,0,0,21.8,0.416,26,0
464
+ 8,74,70,40,49,35.3,0.705,39,0
465
+ 5,88,78,30,0,27.6,0.258,37,0
466
+ 10,115,98,0,0,24,1.022,34,0
467
+ 0,124,56,13,105,21.8,0.452,21,0
468
+ 0,74,52,10,36,27.8,0.269,22,0
469
+ 0,97,64,36,100,36.8,0.6,25,0
470
+ 8,120,0,0,0,30,0.183,38,1
471
+ 6,154,78,41,140,46.1,0.571,27,0
472
+ 1,144,82,40,0,41.3,0.607,28,0
473
+ 0,137,70,38,0,33.2,0.17,22,0
474
+ 0,119,66,27,0,38.8,0.259,22,0
475
+ 7,136,90,0,0,29.9,0.21,50,0
476
+ 4,114,64,0,0,28.9,0.126,24,0
477
+ 0,137,84,27,0,27.3,0.231,59,0
478
+ 2,105,80,45,191,33.7,0.711,29,1
479
+ 7,114,76,17,110,23.8,0.466,31,0
480
+ 8,126,74,38,75,25.9,0.162,39,0
481
+ 4,132,86,31,0,28,0.419,63,0
482
+ 3,158,70,30,328,35.5,0.344,35,1
483
+ 0,123,88,37,0,35.2,0.197,29,0
484
+ 4,85,58,22,49,27.8,0.306,28,0
485
+ 0,84,82,31,125,38.2,0.233,23,0
486
+ 0,145,0,0,0,44.2,0.63,31,1
487
+ 0,135,68,42,250,42.3,0.365,24,1
488
+ 1,139,62,41,480,40.7,0.536,21,0
489
+ 0,173,78,32,265,46.5,1.159,58,0
490
+ 4,99,72,17,0,25.6,0.294,28,0
491
+ 8,194,80,0,0,26.1,0.551,67,0
492
+ 2,83,65,28,66,36.8,0.629,24,0
493
+ 2,89,90,30,0,33.5,0.292,42,0
494
+ 4,99,68,38,0,32.8,0.145,33,0
495
+ 4,125,70,18,122,28.9,1.144,45,1
496
+ 3,80,0,0,0,0,0.174,22,0
497
+ 6,166,74,0,0,26.6,0.304,66,0
498
+ 5,110,68,0,0,26,0.292,30,0
499
+ 2,81,72,15,76,30.1,0.547,25,0
500
+ 7,195,70,33,145,25.1,0.163,55,1
501
+ 6,154,74,32,193,29.3,0.839,39,0
502
+ 2,117,90,19,71,25.2,0.313,21,0
503
+ 3,84,72,32,0,37.2,0.267,28,0
504
+ 6,0,68,41,0,39,0.727,41,1
505
+ 7,94,64,25,79,33.3,0.738,41,0
506
+ 3,96,78,39,0,37.3,0.238,40,0
507
+ 10,75,82,0,0,33.3,0.263,38,0
508
+ 0,180,90,26,90,36.5,0.314,35,1
509
+ 1,130,60,23,170,28.6,0.692,21,0
510
+ 2,84,50,23,76,30.4,0.968,21,0
511
+ 8,120,78,0,0,25,0.409,64,0
512
+ 12,84,72,31,0,29.7,0.297,46,1
513
+ 0,139,62,17,210,22.1,0.207,21,0
514
+ 9,91,68,0,0,24.2,0.2,58,0
515
+ 2,91,62,0,0,27.3,0.525,22,0
516
+ 3,99,54,19,86,25.6,0.154,24,0
517
+ 3,163,70,18,105,31.6,0.268,28,1
518
+ 9,145,88,34,165,30.3,0.771,53,1
519
+ 7,125,86,0,0,37.6,0.304,51,0
520
+ 13,76,60,0,0,32.8,0.18,41,0
521
+ 6,129,90,7,326,19.6,0.582,60,0
522
+ 2,68,70,32,66,25,0.187,25,0
523
+ 3,124,80,33,130,33.2,0.305,26,0
524
+ 6,114,0,0,0,0,0.189,26,0
525
+ 9,130,70,0,0,34.2,0.652,45,1
526
+ 3,125,58,0,0,31.6,0.151,24,0
527
+ 3,87,60,18,0,21.8,0.444,21,0
528
+ 1,97,64,19,82,18.2,0.299,21,0
529
+ 3,116,74,15,105,26.3,0.107,24,0
530
+ 0,117,66,31,188,30.8,0.493,22,0
531
+ 0,111,65,0,0,24.6,0.66,31,0
532
+ 2,122,60,18,106,29.8,0.717,22,0
533
+ 0,107,76,0,0,45.3,0.686,24,0
534
+ 1,86,66,52,65,41.3,0.917,29,0
535
+ 6,91,0,0,0,29.8,0.501,31,0
536
+ 1,77,56,30,56,33.3,1.251,24,0
537
+ 4,132,0,0,0,32.9,0.302,23,1
538
+ 0,105,90,0,0,29.6,0.197,46,0
539
+ 0,57,60,0,0,21.7,0.735,67,0
540
+ 0,127,80,37,210,36.3,0.804,23,0
541
+ 3,129,92,49,155,36.4,0.968,32,1
542
+ 8,100,74,40,215,39.4,0.661,43,1
543
+ 3,128,72,25,190,32.4,0.549,27,1
544
+ 10,90,85,32,0,34.9,0.825,56,1
545
+ 4,84,90,23,56,39.5,0.159,25,0
546
+ 1,88,78,29,76,32,0.365,29,0
547
+ 8,186,90,35,225,34.5,0.423,37,1
548
+ 5,187,76,27,207,43.6,1.034,53,1
549
+ 4,131,68,21,166,33.1,0.16,28,0
550
+ 1,164,82,43,67,32.8,0.341,50,0
551
+ 4,189,110,31,0,28.5,0.68,37,0
552
+ 1,116,70,28,0,27.4,0.204,21,0
553
+ 3,84,68,30,106,31.9,0.591,25,0
554
+ 6,114,88,0,0,27.8,0.247,66,0
555
+ 1,88,62,24,44,29.9,0.422,23,0
556
+ 1,84,64,23,115,36.9,0.471,28,0
557
+ 7,124,70,33,215,25.5,0.161,37,0
558
+ 1,97,70,40,0,38.1,0.218,30,0
559
+ 8,110,76,0,0,27.8,0.237,58,0
560
+ 11,103,68,40,0,46.2,0.126,42,0
561
+ 11,85,74,0,0,30.1,0.3,35,0
562
+ 6,125,76,0,0,33.8,0.121,54,1
563
+ 0,198,66,32,274,41.3,0.502,28,1
564
+ 1,87,68,34,77,37.6,0.401,24,0
565
+ 6,99,60,19,54,26.9,0.497,32,0
566
+ 0,91,80,0,0,32.4,0.601,27,0
567
+ 2,95,54,14,88,26.1,0.748,22,0
568
+ 1,99,72,30,18,38.6,0.412,21,0
569
+ 6,92,62,32,126,32,0.085,46,0
570
+ 4,154,72,29,126,31.3,0.338,37,0
571
+ 0,121,66,30,165,34.3,0.203,33,1
572
+ 3,78,70,0,0,32.5,0.27,39,0
573
+ 2,130,96,0,0,22.6,0.268,21,0
574
+ 3,111,58,31,44,29.5,0.43,22,0
575
+ 2,98,60,17,120,34.7,0.198,22,0
576
+ 1,143,86,30,330,30.1,0.892,23,0
577
+ 1,119,44,47,63,35.5,0.28,25,0
578
+ 6,108,44,20,130,24,0.813,35,0
579
+ 2,118,80,0,0,42.9,0.693,21,1
580
+ 10,133,68,0,0,27,0.245,36,0
581
+ 2,197,70,99,0,34.7,0.575,62,1
582
+ 0,151,90,46,0,42.1,0.371,21,1
583
+ 6,109,60,27,0,25,0.206,27,0
584
+ 12,121,78,17,0,26.5,0.259,62,0
585
+ 8,100,76,0,0,38.7,0.19,42,0
586
+ 8,124,76,24,600,28.7,0.687,52,1
587
+ 1,93,56,11,0,22.5,0.417,22,0
588
+ 8,143,66,0,0,34.9,0.129,41,1
589
+ 6,103,66,0,0,24.3,0.249,29,0
590
+ 3,176,86,27,156,33.3,1.154,52,1
591
+ 0,73,0,0,0,21.1,0.342,25,0
592
+ 11,111,84,40,0,46.8,0.925,45,1
593
+ 2,112,78,50,140,39.4,0.175,24,0
594
+ 3,132,80,0,0,34.4,0.402,44,1
595
+ 2,82,52,22,115,28.5,1.699,25,0
596
+ 6,123,72,45,230,33.6,0.733,34,0
597
+ 0,188,82,14,185,32,0.682,22,1
598
+ 0,67,76,0,0,45.3,0.194,46,0
599
+ 1,89,24,19,25,27.8,0.559,21,0
600
+ 1,173,74,0,0,36.8,0.088,38,1
601
+ 1,109,38,18,120,23.1,0.407,26,0
602
+ 1,108,88,19,0,27.1,0.4,24,0
603
+ 6,96,0,0,0,23.7,0.19,28,0
604
+ 1,124,74,36,0,27.8,0.1,30,0
605
+ 7,150,78,29,126,35.2,0.692,54,1
606
+ 4,183,0,0,0,28.4,0.212,36,1
607
+ 1,124,60,32,0,35.8,0.514,21,0
608
+ 1,181,78,42,293,40,1.258,22,1
609
+ 1,92,62,25,41,19.5,0.482,25,0
610
+ 0,152,82,39,272,41.5,0.27,27,0
611
+ 1,111,62,13,182,24,0.138,23,0
612
+ 3,106,54,21,158,30.9,0.292,24,0
613
+ 3,174,58,22,194,32.9,0.593,36,1
614
+ 7,168,88,42,321,38.2,0.787,40,1
615
+ 6,105,80,28,0,32.5,0.878,26,0
616
+ 11,138,74,26,144,36.1,0.557,50,1
617
+ 3,106,72,0,0,25.8,0.207,27,0
618
+ 6,117,96,0,0,28.7,0.157,30,0
619
+ 2,68,62,13,15,20.1,0.257,23,0
620
+ 9,112,82,24,0,28.2,1.282,50,1
621
+ 0,119,0,0,0,32.4,0.141,24,1
622
+ 2,112,86,42,160,38.4,0.246,28,0
623
+ 2,92,76,20,0,24.2,1.698,28,0
624
+ 6,183,94,0,0,40.8,1.461,45,0
625
+ 0,94,70,27,115,43.5,0.347,21,0
626
+ 2,108,64,0,0,30.8,0.158,21,0
627
+ 4,90,88,47,54,37.7,0.362,29,0
628
+ 0,125,68,0,0,24.7,0.206,21,0
629
+ 0,132,78,0,0,32.4,0.393,21,0
630
+ 5,128,80,0,0,34.6,0.144,45,0
631
+ 4,94,65,22,0,24.7,0.148,21,0
632
+ 7,114,64,0,0,27.4,0.732,34,1
633
+ 0,102,78,40,90,34.5,0.238,24,0
634
+ 2,111,60,0,0,26.2,0.343,23,0
635
+ 1,128,82,17,183,27.5,0.115,22,0
636
+ 10,92,62,0,0,25.9,0.167,31,0
637
+ 13,104,72,0,0,31.2,0.465,38,1
638
+ 5,104,74,0,0,28.8,0.153,48,0
639
+ 2,94,76,18,66,31.6,0.649,23,0
640
+ 7,97,76,32,91,40.9,0.871,32,1
641
+ 1,100,74,12,46,19.5,0.149,28,0
642
+ 0,102,86,17,105,29.3,0.695,27,0
643
+ 4,128,70,0,0,34.3,0.303,24,0
644
+ 6,147,80,0,0,29.5,0.178,50,1
645
+ 4,90,0,0,0,28,0.61,31,0
646
+ 3,103,72,30,152,27.6,0.73,27,0
647
+ 2,157,74,35,440,39.4,0.134,30,0
648
+ 1,167,74,17,144,23.4,0.447,33,1
649
+ 0,179,50,36,159,37.8,0.455,22,1
650
+ 11,136,84,35,130,28.3,0.26,42,1
651
+ 0,107,60,25,0,26.4,0.133,23,0
652
+ 1,91,54,25,100,25.2,0.234,23,0
653
+ 1,117,60,23,106,33.8,0.466,27,0
654
+ 5,123,74,40,77,34.1,0.269,28,0
655
+ 2,120,54,0,0,26.8,0.455,27,0
656
+ 1,106,70,28,135,34.2,0.142,22,0
657
+ 2,155,52,27,540,38.7,0.24,25,1
658
+ 2,101,58,35,90,21.8,0.155,22,0
659
+ 1,120,80,48,200,38.9,1.162,41,0
660
+ 11,127,106,0,0,39,0.19,51,0
661
+ 3,80,82,31,70,34.2,1.292,27,1
662
+ 10,162,84,0,0,27.7,0.182,54,0
663
+ 1,199,76,43,0,42.9,1.394,22,1
664
+ 8,167,106,46,231,37.6,0.165,43,1
665
+ 9,145,80,46,130,37.9,0.637,40,1
666
+ 6,115,60,39,0,33.7,0.245,40,1
667
+ 1,112,80,45,132,34.8,0.217,24,0
668
+ 4,145,82,18,0,32.5,0.235,70,1
669
+ 10,111,70,27,0,27.5,0.141,40,1
670
+ 6,98,58,33,190,34,0.43,43,0
671
+ 9,154,78,30,100,30.9,0.164,45,0
672
+ 6,165,68,26,168,33.6,0.631,49,0
673
+ 1,99,58,10,0,25.4,0.551,21,0
674
+ 10,68,106,23,49,35.5,0.285,47,0
675
+ 3,123,100,35,240,57.3,0.88,22,0
676
+ 8,91,82,0,0,35.6,0.587,68,0
677
+ 6,195,70,0,0,30.9,0.328,31,1
678
+ 9,156,86,0,0,24.8,0.23,53,1
679
+ 0,93,60,0,0,35.3,0.263,25,0
680
+ 3,121,52,0,0,36,0.127,25,1
681
+ 2,101,58,17,265,24.2,0.614,23,0
682
+ 2,56,56,28,45,24.2,0.332,22,0
683
+ 0,162,76,36,0,49.6,0.364,26,1
684
+ 0,95,64,39,105,44.6,0.366,22,0
685
+ 4,125,80,0,0,32.3,0.536,27,1
686
+ 5,136,82,0,0,0,0.64,69,0
687
+ 2,129,74,26,205,33.2,0.591,25,0
688
+ 3,130,64,0,0,23.1,0.314,22,0
689
+ 1,107,50,19,0,28.3,0.181,29,0
690
+ 1,140,74,26,180,24.1,0.828,23,0
691
+ 1,144,82,46,180,46.1,0.335,46,1
692
+ 8,107,80,0,0,24.6,0.856,34,0
693
+ 13,158,114,0,0,42.3,0.257,44,1
694
+ 2,121,70,32,95,39.1,0.886,23,0
695
+ 7,129,68,49,125,38.5,0.439,43,1
696
+ 2,90,60,0,0,23.5,0.191,25,0
697
+ 7,142,90,24,480,30.4,0.128,43,1
698
+ 3,169,74,19,125,29.9,0.268,31,1
699
+ 0,99,0,0,0,25,0.253,22,0
700
+ 4,127,88,11,155,34.5,0.598,28,0
701
+ 4,118,70,0,0,44.5,0.904,26,0
702
+ 2,122,76,27,200,35.9,0.483,26,0
703
+ 6,125,78,31,0,27.6,0.565,49,1
704
+ 1,168,88,29,0,35,0.905,52,1
705
+ 2,129,0,0,0,38.5,0.304,41,0
706
+ 4,110,76,20,100,28.4,0.118,27,0
707
+ 6,80,80,36,0,39.8,0.177,28,0
708
+ 10,115,0,0,0,0,0.261,30,1
709
+ 2,127,46,21,335,34.4,0.176,22,0
710
+ 9,164,78,0,0,32.8,0.148,45,1
711
+ 2,93,64,32,160,38,0.674,23,1
712
+ 3,158,64,13,387,31.2,0.295,24,0
713
+ 5,126,78,27,22,29.6,0.439,40,0
714
+ 10,129,62,36,0,41.2,0.441,38,1
715
+ 0,134,58,20,291,26.4,0.352,21,0
716
+ 3,102,74,0,0,29.5,0.121,32,0
717
+ 7,187,50,33,392,33.9,0.826,34,1
718
+ 3,173,78,39,185,33.8,0.97,31,1
719
+ 10,94,72,18,0,23.1,0.595,56,0
720
+ 1,108,60,46,178,35.5,0.415,24,0
721
+ 5,97,76,27,0,35.6,0.378,52,1
722
+ 4,83,86,19,0,29.3,0.317,34,0
723
+ 1,114,66,36,200,38.1,0.289,21,0
724
+ 1,149,68,29,127,29.3,0.349,42,1
725
+ 5,117,86,30,105,39.1,0.251,42,0
726
+ 1,111,94,0,0,32.8,0.265,45,0
727
+ 4,112,78,40,0,39.4,0.236,38,0
728
+ 1,116,78,29,180,36.1,0.496,25,0
729
+ 0,141,84,26,0,32.4,0.433,22,0
730
+ 2,175,88,0,0,22.9,0.326,22,0
731
+ 2,92,52,0,0,30.1,0.141,22,0
732
+ 3,130,78,23,79,28.4,0.323,34,1
733
+ 8,120,86,0,0,28.4,0.259,22,1
734
+ 2,174,88,37,120,44.5,0.646,24,1
735
+ 2,106,56,27,165,29,0.426,22,0
736
+ 2,105,75,0,0,23.3,0.56,53,0
737
+ 4,95,60,32,0,35.4,0.284,28,0
738
+ 0,126,86,27,120,27.4,0.515,21,0
739
+ 8,65,72,23,0,32,0.6,42,0
740
+ 2,99,60,17,160,36.6,0.453,21,0
741
+ 1,102,74,0,0,39.5,0.293,42,1
742
+ 11,120,80,37,150,42.3,0.785,48,1
743
+ 3,102,44,20,94,30.8,0.4,26,0
744
+ 1,109,58,18,116,28.5,0.219,22,0
745
+ 9,140,94,0,0,32.7,0.734,45,1
746
+ 13,153,88,37,140,40.6,1.174,39,0
747
+ 12,100,84,33,105,30,0.488,46,0
748
+ 1,147,94,41,0,49.3,0.358,27,1
749
+ 1,81,74,41,57,46.3,1.096,32,0
750
+ 3,187,70,22,200,36.4,0.408,36,1
751
+ 6,162,62,0,0,24.3,0.178,50,1
752
+ 4,136,70,0,0,31.2,1.182,22,1
753
+ 1,121,78,39,74,39,0.261,28,0
754
+ 3,108,62,24,0,26,0.223,25,0
755
+ 0,181,88,44,510,43.3,0.222,26,1
756
+ 8,154,78,32,0,32.4,0.443,45,1
757
+ 1,128,88,39,110,36.5,1.057,37,1
758
+ 7,137,90,41,0,32,0.391,39,0
759
+ 0,123,72,0,0,36.3,0.258,52,1
760
+ 1,106,76,0,0,37.5,0.197,26,0
761
+ 6,190,92,0,0,35.5,0.278,66,1
762
+ 2,88,58,26,16,28.4,0.766,22,0
763
+ 9,170,74,31,0,44,0.403,43,1
764
+ 9,89,62,0,0,22.5,0.142,33,0
765
+ 10,101,76,48,180,32.9,0.171,63,0
766
+ 2,122,70,27,0,36.8,0.34,27,0
767
+ 5,121,72,23,112,26.2,0.245,30,0
768
+ 1,126,60,0,0,30.1,0.349,47,1
769
+ 1,93,70,31,0,30.4,0.315,23,0
diabetes/diabetes_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3494e63c66fca442559285dd50edf897718d71be3efa0455ca18f25ef5ae9693
3
+ size 11435
diabetes/diabetes_model.sav ADDED
Binary file (28.8 kB). View file
 
hypertension/Hypertension-risk-model-main.csv ADDED
The diff for this file is too large to render. See raw diff
 
hypertension/extratrees_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25d68f043edf9b7102ec5d20d92dd7ff22e825a2c6db7953c0528c717694dc39
3
+ size 13593275
hypertension/scaler.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:002f9ab7fbeacedff9081497368489816e48e302c79ca20a080f4b497a36aad5
3
+ size 802
mental/MentalH.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c181695a3ccfd5f4654b32b84aac405a5a0d615369bfdb101d56b9797c510382
3
+ size 1934069
requirements.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ numpy
2
+ scikit-learn
3
+ streamlit
4
+ streamlit-option-menu
5
+ seaborn
6
+ matplotlib
7
+ pandas
8
+ google-generativeai
9
+ python-dotenv
10
+ torch
11
+ transformers
12
+ SpeechRecognition
13
+ pydub
14
+ tf-keras
15
+ plotly
16
+ plotly-express
17
+
sleep_health/Sleep_health_and_lifestyle_dataset.csv ADDED
@@ -0,0 +1,375 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Person ID,Gender,Age,Occupation,Sleep Duration,Quality of Sleep,Physical Activity Level,Stress Level,BMI Category,Blood Pressure,Heart Rate,Daily Steps,Sleep Disorder
2
+ 1,Male,27,Software Engineer,6.1,6,42,6,Overweight,126/83,77,4200,None
3
+ 2,Male,28,Doctor,6.2,6,60,8,Normal,125/80,75,10000,None
4
+ 3,Male,28,Doctor,6.2,6,60,8,Normal,125/80,75,10000,None
5
+ 4,Male,28,Sales Representative,5.9,4,30,8,Obese,140/90,85,3000,Sleep Apnea
6
+ 5,Male,28,Sales Representative,5.9,4,30,8,Obese,140/90,85,3000,Sleep Apnea
7
+ 6,Male,28,Software Engineer,5.9,4,30,8,Obese,140/90,85,3000,Insomnia
8
+ 7,Male,29,Teacher,6.3,6,40,7,Obese,140/90,82,3500,Insomnia
9
+ 8,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
10
+ 9,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
11
+ 10,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
12
+ 11,Male,29,Doctor,6.1,6,30,8,Normal,120/80,70,8000,None
13
+ 12,Male,29,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
14
+ 13,Male,29,Doctor,6.1,6,30,8,Normal,120/80,70,8000,None
15
+ 14,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None
16
+ 15,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None
17
+ 16,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,None
18
+ 17,Female,29,Nurse,6.5,5,40,7,Normal Weight,132/87,80,4000,Sleep Apnea
19
+ 18,Male,29,Doctor,6,6,30,8,Normal,120/80,70,8000,Sleep Apnea
20
+ 19,Female,29,Nurse,6.5,5,40,7,Normal Weight,132/87,80,4000,Insomnia
21
+ 20,Male,30,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
22
+ 21,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
23
+ 22,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
24
+ 23,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
25
+ 24,Male,30,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
26
+ 25,Male,30,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
27
+ 26,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
28
+ 27,Male,30,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
29
+ 28,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
30
+ 29,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
31
+ 30,Male,30,Doctor,7.9,7,75,6,Normal,120/80,70,8000,None
32
+ 31,Female,30,Nurse,6.4,5,35,7,Normal Weight,130/86,78,4100,Sleep Apnea
33
+ 32,Female,30,Nurse,6.4,5,35,7,Normal Weight,130/86,78,4100,Insomnia
34
+ 33,Female,31,Nurse,7.9,8,75,4,Normal Weight,117/76,69,6800,None
35
+ 34,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
36
+ 35,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
37
+ 36,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
38
+ 37,Male,31,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
39
+ 38,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
40
+ 39,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
41
+ 40,Male,31,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
42
+ 41,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
43
+ 42,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
44
+ 43,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
45
+ 44,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
46
+ 45,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
47
+ 46,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
48
+ 47,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
49
+ 48,Male,31,Doctor,7.8,7,75,6,Normal,120/80,70,8000,None
50
+ 49,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
51
+ 50,Male,31,Doctor,7.7,7,75,6,Normal,120/80,70,8000,Sleep Apnea
52
+ 51,Male,32,Engineer,7.5,8,45,3,Normal,120/80,70,8000,None
53
+ 52,Male,32,Engineer,7.5,8,45,3,Normal,120/80,70,8000,None
54
+ 53,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
55
+ 54,Male,32,Doctor,7.6,7,75,6,Normal,120/80,70,8000,None
56
+ 55,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
57
+ 56,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
58
+ 57,Male,32,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
59
+ 58,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
60
+ 59,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
61
+ 60,Male,32,Doctor,7.7,7,75,6,Normal,120/80,70,8000,None
62
+ 61,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
63
+ 62,Male,32,Doctor,6,6,30,8,Normal,125/80,72,5000,None
64
+ 63,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
65
+ 64,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
66
+ 65,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
67
+ 66,Male,32,Doctor,6.2,6,30,8,Normal,125/80,72,5000,None
68
+ 67,Male,32,Accountant,7.2,8,50,6,Normal Weight,118/76,68,7000,None
69
+ 68,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,Insomnia
70
+ 69,Female,33,Scientist,6.2,6,50,6,Overweight,128/85,76,5500,None
71
+ 70,Female,33,Scientist,6.2,6,50,6,Overweight,128/85,76,5500,None
72
+ 71,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
73
+ 72,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
74
+ 73,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
75
+ 74,Male,33,Doctor,6.1,6,30,8,Normal,125/80,72,5000,None
76
+ 75,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
77
+ 76,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
78
+ 77,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
79
+ 78,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
80
+ 79,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
81
+ 80,Male,33,Doctor,6,6,30,8,Normal,125/80,72,5000,None
82
+ 81,Female,34,Scientist,5.8,4,32,8,Overweight,131/86,81,5200,Sleep Apnea
83
+ 82,Female,34,Scientist,5.8,4,32,8,Overweight,131/86,81,5200,Sleep Apnea
84
+ 83,Male,35,Teacher,6.7,7,40,5,Overweight,128/84,70,5600,None
85
+ 84,Male,35,Teacher,6.7,7,40,5,Overweight,128/84,70,5600,None
86
+ 85,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120/80,70,8000,None
87
+ 86,Female,35,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
88
+ 87,Male,35,Engineer,7.2,8,60,4,Normal,125/80,65,5000,None
89
+ 88,Male,35,Engineer,7.2,8,60,4,Normal,125/80,65,5000,None
90
+ 89,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
91
+ 90,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
92
+ 91,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
93
+ 92,Male,35,Engineer,7.3,8,60,4,Normal,125/80,65,5000,None
94
+ 93,Male,35,Software Engineer,7.5,8,60,5,Normal Weight,120/80,70,8000,None
95
+ 94,Male,35,Lawyer,7.4,7,60,5,Obese,135/88,84,3300,Sleep Apnea
96
+ 95,Female,36,Accountant,7.2,8,60,4,Normal,115/75,68,7000,Insomnia
97
+ 96,Female,36,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
98
+ 97,Female,36,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
99
+ 98,Female,36,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
100
+ 99,Female,36,Teacher,7.1,8,60,4,Normal,115/75,68,7000,None
101
+ 100,Female,36,Teacher,7.1,8,60,4,Normal,115/75,68,7000,None
102
+ 101,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None
103
+ 102,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None
104
+ 103,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,None
105
+ 104,Male,36,Teacher,6.6,5,35,7,Overweight,129/84,74,4800,Sleep Apnea
106
+ 105,Female,36,Teacher,7.2,8,60,4,Normal,115/75,68,7000,Sleep Apnea
107
+ 106,Male,36,Teacher,6.6,5,35,7,Overweight,129/84,74,4800,Insomnia
108
+ 107,Female,37,Nurse,6.1,6,42,6,Overweight,126/83,77,4200,None
109
+ 108,Male,37,Engineer,7.8,8,70,4,Normal Weight,120/80,68,7000,None
110
+ 109,Male,37,Engineer,7.8,8,70,4,Normal Weight,120/80,68,7000,None
111
+ 110,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None
112
+ 111,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
113
+ 112,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None
114
+ 113,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
115
+ 114,Male,37,Lawyer,7.4,8,60,5,Normal,130/85,68,8000,None
116
+ 115,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
117
+ 116,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
118
+ 117,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
119
+ 118,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
120
+ 119,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
121
+ 120,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
122
+ 121,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
123
+ 122,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
124
+ 123,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
125
+ 124,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
126
+ 125,Female,37,Accountant,7.2,8,60,4,Normal,115/75,68,7000,None
127
+ 126,Female,37,Nurse,7.5,8,60,4,Normal Weight,120/80,70,8000,None
128
+ 127,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
129
+ 128,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
130
+ 129,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
131
+ 130,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
132
+ 131,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
133
+ 132,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
134
+ 133,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
135
+ 134,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
136
+ 135,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
137
+ 136,Male,38,Lawyer,7.3,8,60,5,Normal,130/85,68,8000,None
138
+ 137,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
139
+ 138,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None
140
+ 139,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
141
+ 140,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None
142
+ 141,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
143
+ 142,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,None
144
+ 143,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
145
+ 144,Female,38,Accountant,7.1,8,60,4,Normal,115/75,68,7000,None
146
+ 145,Male,38,Lawyer,7.1,8,60,5,Normal,130/85,68,8000,Sleep Apnea
147
+ 146,Female,38,Lawyer,7.4,7,60,5,Obese,135/88,84,3300,Sleep Apnea
148
+ 147,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,Insomnia
149
+ 148,Male,39,Engineer,6.5,5,40,7,Overweight,132/87,80,4000,Insomnia
150
+ 149,Female,39,Lawyer,6.9,7,50,6,Normal Weight,128/85,75,5500,None
151
+ 150,Female,39,Accountant,8,9,80,3,Normal Weight,115/78,67,7500,None
152
+ 151,Female,39,Accountant,8,9,80,3,Normal Weight,115/78,67,7500,None
153
+ 152,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
154
+ 153,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
155
+ 154,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
156
+ 155,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
157
+ 156,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
158
+ 157,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
159
+ 158,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
160
+ 159,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
161
+ 160,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
162
+ 161,Male,39,Lawyer,7.2,8,60,5,Normal,130/85,68,8000,None
163
+ 162,Female,40,Accountant,7.2,8,55,6,Normal Weight,119/77,73,7300,None
164
+ 163,Female,40,Accountant,7.2,8,55,6,Normal Weight,119/77,73,7300,None
165
+ 164,Male,40,Lawyer,7.9,8,90,5,Normal,130/85,68,8000,None
166
+ 165,Male,40,Lawyer,7.9,8,90,5,Normal,130/85,68,8000,None
167
+ 166,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,Insomnia
168
+ 167,Male,41,Engineer,7.3,8,70,6,Normal Weight,121/79,72,6200,None
169
+ 168,Male,41,Lawyer,7.1,7,55,6,Overweight,125/82,72,6000,None
170
+ 169,Male,41,Lawyer,7.1,7,55,6,Overweight,125/82,72,6000,None
171
+ 170,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
172
+ 171,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
173
+ 172,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
174
+ 173,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
175
+ 174,Male,41,Lawyer,7.7,8,90,5,Normal,130/85,70,8000,None
176
+ 175,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None
177
+ 176,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None
178
+ 177,Male,41,Lawyer,7.6,8,90,5,Normal,130/85,70,8000,None
179
+ 178,Male,42,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
180
+ 179,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
181
+ 180,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
182
+ 181,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
183
+ 182,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
184
+ 183,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
185
+ 184,Male,42,Lawyer,7.8,8,90,5,Normal,130/85,70,8000,None
186
+ 185,Female,42,Teacher,6.8,6,45,7,Overweight,130/85,78,5000,Sleep Apnea
187
+ 186,Female,42,Teacher,6.8,6,45,7,Overweight,130/85,78,5000,Sleep Apnea
188
+ 187,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia
189
+ 188,Male,43,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
190
+ 189,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia
191
+ 190,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
192
+ 191,Female,43,Teacher,6.7,7,45,4,Overweight,135/90,65,6000,Insomnia
193
+ 192,Male,43,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
194
+ 193,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
195
+ 194,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
196
+ 195,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
197
+ 196,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
198
+ 197,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
199
+ 198,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
200
+ 199,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
201
+ 200,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
202
+ 201,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Insomnia
203
+ 202,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Insomnia
204
+ 203,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Insomnia
205
+ 204,Male,43,Engineer,6.9,6,47,7,Normal Weight,117/76,69,6800,None
206
+ 205,Male,43,Engineer,7.6,8,75,4,Overweight,122/80,68,6800,None
207
+ 206,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
208
+ 207,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
209
+ 208,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
210
+ 209,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
211
+ 210,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
212
+ 211,Male,43,Engineer,7.7,8,90,5,Normal,130/85,70,8000,None
213
+ 212,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
214
+ 213,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
215
+ 214,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
216
+ 215,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
217
+ 216,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
218
+ 217,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
219
+ 218,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,None
220
+ 219,Male,43,Engineer,7.8,8,90,5,Normal,130/85,70,8000,Sleep Apnea
221
+ 220,Male,43,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,Sleep Apnea
222
+ 221,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
223
+ 222,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
224
+ 223,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
225
+ 224,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
226
+ 225,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
227
+ 226,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
228
+ 227,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
229
+ 228,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
230
+ 229,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
231
+ 230,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
232
+ 231,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
233
+ 232,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
234
+ 233,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
235
+ 234,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
236
+ 235,Female,44,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
237
+ 236,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
238
+ 237,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
239
+ 238,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
240
+ 239,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
241
+ 240,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
242
+ 241,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
243
+ 242,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
244
+ 243,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,Insomnia
245
+ 244,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
246
+ 245,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
247
+ 246,Female,44,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
248
+ 247,Male,44,Salesperson,6.3,6,45,7,Overweight,130/85,72,6000,Insomnia
249
+ 248,Male,44,Engineer,6.8,7,45,7,Overweight,130/85,78,5000,Insomnia
250
+ 249,Male,44,Salesperson,6.4,6,45,7,Overweight,130/85,72,6000,None
251
+ 250,Male,44,Salesperson,6.5,6,45,7,Overweight,130/85,72,6000,None
252
+ 251,Female,45,Teacher,6.8,7,30,6,Overweight,135/90,65,6000,Insomnia
253
+ 252,Female,45,Teacher,6.8,7,30,6,Overweight,135/90,65,6000,Insomnia
254
+ 253,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
255
+ 254,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
256
+ 255,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
257
+ 256,Female,45,Teacher,6.5,7,45,4,Overweight,135/90,65,6000,Insomnia
258
+ 257,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
259
+ 258,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
260
+ 259,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
261
+ 260,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
262
+ 261,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,Insomnia
263
+ 262,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,None
264
+ 263,Female,45,Teacher,6.6,7,45,4,Overweight,135/90,65,6000,None
265
+ 264,Female,45,Manager,6.9,7,55,5,Overweight,125/82,75,5500,None
266
+ 265,Male,48,Doctor,7.3,7,65,5,Obese,142/92,83,3500,Insomnia
267
+ 266,Female,48,Nurse,5.9,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
268
+ 267,Male,48,Doctor,7.3,7,65,5,Obese,142/92,83,3500,Insomnia
269
+ 268,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,None
270
+ 269,Female,49,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
271
+ 270,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
272
+ 271,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
273
+ 272,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
274
+ 273,Female,49,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
275
+ 274,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
276
+ 275,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
277
+ 276,Female,49,Nurse,6.2,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
278
+ 277,Male,49,Doctor,8.1,9,85,3,Obese,139/91,86,3700,Sleep Apnea
279
+ 278,Male,49,Doctor,8.1,9,85,3,Obese,139/91,86,3700,Sleep Apnea
280
+ 279,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Insomnia
281
+ 280,Female,50,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
282
+ 281,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,None
283
+ 282,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
284
+ 283,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
285
+ 284,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
286
+ 285,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
287
+ 286,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
288
+ 287,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
289
+ 288,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
290
+ 289,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
291
+ 290,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
292
+ 291,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
293
+ 292,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
294
+ 293,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
295
+ 294,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
296
+ 295,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
297
+ 296,Female,50,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
298
+ 297,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
299
+ 298,Female,50,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
300
+ 299,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
301
+ 300,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
302
+ 301,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
303
+ 302,Female,51,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
304
+ 303,Female,51,Nurse,7.1,7,55,6,Normal Weight,125/82,72,6000,None
305
+ 304,Female,51,Nurse,6,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
306
+ 305,Female,51,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
307
+ 306,Female,51,Nurse,6.1,6,90,8,Overweight,140/95,75,10000,Sleep Apnea
308
+ 307,Female,52,Accountant,6.5,7,45,7,Overweight,130/85,72,6000,Insomnia
309
+ 308,Female,52,Accountant,6.5,7,45,7,Overweight,130/85,72,6000,Insomnia
310
+ 309,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
311
+ 310,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
312
+ 311,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
313
+ 312,Female,52,Accountant,6.6,7,45,7,Overweight,130/85,72,6000,Insomnia
314
+ 313,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
315
+ 314,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
316
+ 315,Female,52,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
317
+ 316,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,Insomnia
318
+ 317,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
319
+ 318,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
320
+ 319,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
321
+ 320,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
322
+ 321,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
323
+ 322,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
324
+ 323,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
325
+ 324,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
326
+ 325,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
327
+ 326,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
328
+ 327,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
329
+ 328,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
330
+ 329,Female,53,Engineer,8.3,9,30,3,Normal,125/80,65,5000,None
331
+ 330,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
332
+ 331,Female,53,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
333
+ 332,Female,53,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
334
+ 333,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
335
+ 334,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
336
+ 335,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
337
+ 336,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
338
+ 337,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
339
+ 338,Female,54,Engineer,8.4,9,30,3,Normal,125/80,65,5000,None
340
+ 339,Female,54,Engineer,8.5,9,30,3,Normal,125/80,65,5000,None
341
+ 340,Female,55,Nurse,8.1,9,75,4,Overweight,140/95,72,5000,Sleep Apnea
342
+ 341,Female,55,Nurse,8.1,9,75,4,Overweight,140/95,72,5000,Sleep Apnea
343
+ 342,Female,56,Doctor,8.2,9,90,3,Normal Weight,118/75,65,10000,None
344
+ 343,Female,56,Doctor,8.2,9,90,3,Normal Weight,118/75,65,10000,None
345
+ 344,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,None
346
+ 345,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
347
+ 346,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
348
+ 347,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
349
+ 348,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
350
+ 349,Female,57,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
351
+ 350,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
352
+ 351,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
353
+ 352,Female,57,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
354
+ 353,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
355
+ 354,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
356
+ 355,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
357
+ 356,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
358
+ 357,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
359
+ 358,Female,58,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
360
+ 359,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,None
361
+ 360,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,None
362
+ 361,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
363
+ 362,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
364
+ 363,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
365
+ 364,Female,59,Nurse,8.2,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
366
+ 365,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
367
+ 366,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
368
+ 367,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
369
+ 368,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
370
+ 369,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
371
+ 370,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
372
+ 371,Female,59,Nurse,8,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
373
+ 372,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
374
+ 373,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
375
+ 374,Female,59,Nurse,8.1,9,75,3,Overweight,140/95,68,7000,Sleep Apnea
sleep_health/best_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62f6879cb46a20e7b43dce5dd42a26b3a5da760fd9635df7799d6d1d42d18bae
3
+ size 137954
sleep_health/label_encoders.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:495d06de358ed8aa738672948af7a91cc556b6d6ab36d4ed77bd26adde9ee44e
3
+ size 882
sleep_health/scaler.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04a40f6f9e9ea925cb8781771d8fa0bcab70fc81231ce6b9caf607ec75c807d2
3
+ size 2196
sleep_health/svc_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:138df639230fd2987a2dd5b96ad0d181a829b3841c8e67868c6f66bba330333a
3
+ size 27127
stroke/finalized_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df868c250b76e6e13a1af55006426fffec4bb1e0015477824c6852c3a7a49d92
3
+ size 3727075
stroke/healthcare-dataset-stroke-data.csv ADDED
The diff for this file is too large to render. See raw diff