File size: 42,210 Bytes
b18caa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1a5f27
b18caa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1a5f27
 
 
b18caa7
 
 
 
 
a1a5f27
 
 
b18caa7
 
 
 
 
 
 
 
 
 
 
623d6d9
 
b18caa7
 
 
 
 
 
 
 
 
 
 
 
 
 
fe3e720
b18caa7
 
 
 
 
fe3e720
 
 
 
 
 
 
 
 
b18caa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe3e720
 
 
 
 
 
a1a5f27
 
 
b18caa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
753a007
 
 
 
 
 
 
 
 
b18caa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
753a007
 
b18caa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40aa75e
 
b18caa7
 
 
 
 
c12b87a
 
b18caa7
1081520
 
a1a5f27
 
 
1081520
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b18caa7
41f1a81
b18caa7
1081520
 
 
 
 
 
 
b18caa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69102a6
 
b18caa7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f83400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
import os
import numpy as np
import pandas as pd
import joblib
import pickle
import streamlit as st
import seaborn as sns
from streamlit_option_menu import option_menu
import time
import matplotlib.pyplot as plt
import json
import google.generativeai as genai
from dotenv import load_dotenv
from transformers import pipeline

load_dotenv()
# Set page config with icon
st.set_page_config(page_title="Disease Prediction", page_icon="🩺", layout="wide")

diabetes_model = pickle.load(open('diabetes/diabetes_model.sav', 'rb'))
# asthama_model = pickle.load(open('asthama/model.pkl', 'rb'))

import joblib
asthama_model = joblib.load("asthama/model.pkl")

cardio_model = pickle.load(open('cardio_vascular/xgboost_cardiovascular_model.pkl', 'rb'))

# stroke_model = pickle.load(open('stroke/stroke_model.sav', 'rb'))

stroke_model = joblib.load("stroke/finalized_model.pkl")

prep_asthama = pickle.load(open('asthama/preprocessor.pkl', 'rb'))

# sleep_model = pickle.load(open('sleep_health/best_model.pkl', 'rb'))
# scaler = pickle.load(open('sleep_health/scaler.pkl', 'rb'))
# label_encoder = pickle.load(open('sleep_health/label_encoders.pkl', 'rb'))

# At the beginning of your app, when loading models:
try:
    sleep_model = pickle.load(open('sleep_health/svc_model.pkl', 'rb'))
    scaler = pickle.load(open('sleep_health/scaler.pkl', 'rb'))
    label_encoder = pickle.load(open('sleep_health/label_encoders.pkl', 'rb'))
    
    # Store the expected feature names if available
    # This depends on how your model was saved/trained
    # if hasattr(sleep_model, 'feature_names_in_'):
    #     expected_features = sleep_model.feature_names_in_
    # else:
    #     # Try to load feature names from a separate file
    #     try:
    #         with open('sleep_health/feature_names.pkl', 'rb') as f:
    #             expected_features = pickle.load(f)
    #     except:
    #         st.warning("Warning: Feature names not found. Predictions may be inaccurate.")
    #         expected_features = None
            
except FileNotFoundError:
    st.error("Error: Model files not found. Please upload the model files.")
    st.stop()

# Import the health_score module
import health_score

with st.sidebar:
    st.title("🩺 Disease Prediction")
    
    selected = option_menu(
        menu_title="Navigation",
        options=['Home','Health Score' , 'Diabetes Prediction','Hypertension Prediction',  # Keep Health Score in this list
                'Cardiovascular Disease Prediction', 'Stroke Prediction','Asthma Prediction', 
                'Sleep Health Analysis','Mental-Analysis','Medical Consultant', 'Data Visualization'],
        icons=['house', 'activity', 'lungs', 'heart-pulse', 'brain', 'bar-chart', 'chat'],
        menu_icon="cast",
        default_index=0,
        styles={
            "container": {"padding": "5px", "background-color": "#111111"},  # Darker background
            "icon": {"color": "#FF0000", "font-size": "20px"},  # Red icons
            "nav-link": {"font-size": "16px", "text-align": "left", "margin": "0px", "color": "#FFFFFF"},  # White text
            "nav-link-selected": {"background-color": "#FF0000", "color": "#FFFFFF"},
        }
    )

# 'Mental-Analysis',

# 'Checkbox-to-disease-predictor', 
# 'Text-based Disease Prediction', 
# Utility function to safely convert input to float
def safe_float(value, default=0.0):
    try:
        return float(value)
    except ValueError:
        return default  # Assigns default value if conversion fails


# πŸš€ Home Page
if selected == 'Home':
    st.title("🩺 Early Prediction of Health & Lifestyle Diseases")


    st.markdown("""
    ## Welcome to the **Early Prediction of Health & Lifestyle Diseases**!  
    This tool provides **early prediction and analysis** for various health conditions using **Machine Learning & NLP**.
    
    ### πŸ₯ Available Features:
    - **βœ… Disease Predictors**:
      - Diabetes  
      - Hypertension  
      - Cardiovascular Disease  
      - Asthma  
      - Stroke  
    - **πŸŒ™ Sleep Health Analysis**  
    - **🧠 Mental Health Assessment**  
    - **πŸ€– AI Chatbot for Health Assistance**  
    - **πŸ“Š Data Visualizer** (Analyze trends in health conditions)  
                
    πŸ‘‰ Select an option from the sidebar to proceed!  
    """)

    with st.expander("πŸš€ Quick Start Guide"):
        st.write("""
        1. Select a **health prediction model** from the sidebar.
        2. Enter your details in the input fields.
        3. Click **Predict** to get your result.
        4. View personalized **health insights & recommendations**.
        """)

    # Disclaimer Section
    st.markdown("---")
    st.markdown("""
    The predictions are generated using **machine learning models** trained on real-world healthcare datasets, incorporating **evaluation metrics and graphical insights** to enhance interpretability.  

    However, this tool has **not undergone clinical validation** and should be used **for informational and educational purposes only**. It is not intended to serve as a substitute for professional medical diagnosis or treatment. Always consult a qualified healthcare provider for medical advice.
    """)

if selected == 'Health Score':
    health_score.show_health_score()  # This should be placed before other disease predictions

if selected == 'Diabetes Prediction':
    st.title('🩸 Diabetes Prediction using ML (SVC)')
    st.image("https://cdn-icons-png.flaticon.com/512/2919/2919950.png", width=100)

    st.markdown("""
    This model predicts the likelihood of **Diabetes** based on various health parameters.  
    Please enter the required medical details below and click **"Diabetes Test Result"** to get the prediction.
    """)



    # Create columns for better input organization
    col1, col2 = st.columns(2)

    with col1:
        gender = st.radio("Gender", ["Male", "Female"], horizontal=True)
        
        # For females, show Pregnancies input; for males, set to 0
        if gender == "Female":
            Pregnancies = safe_float(st.text_input("Number of Pregnancies", "0"))
        else:
            Pregnancies = 0.0
            st.info("Pregnancies set to 0 for males")
            
        Glucose = safe_float(st.text_input("Glucose Level", "100"))
        BloodPressure = safe_float(st.text_input("Blood Pressure", "80"))
        SkinThickness = safe_float(st.text_input("Skin Thickness", "20"))

    with col2:
        Insulin = safe_float(st.text_input("Insulin Level", "79"))
        BMI = safe_float(st.text_input("BMI (Body Mass Index)", "25.0"))
        DiabetesPedigreeFunction = safe_float(st.text_input("Diabetes Pedigree Function", "0.5"))
        Age = st.number_input("Enter Age", min_value=10, max_value=100, value=30, step=1)

    with col1:
        if st.button('Diabetes Test Result'):
            try:
                input_data = np.array([[Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age]])
                
                with st.spinner("⏳ Predicting... Please wait..."):
                    time.sleep(2)  # Simulating delay (remove in actual use)
                    diab_prediction = diabetes_model.predict(input_data)
                
                result = "πŸ›‘ The person is diabetic" if diab_prediction[0] == 1 else "βœ… The person is not diabetic"
                if diab_prediction[0] == 0:
                    # st.balloons()  # Or use st.confetti() if you install the library
                    st.success(result)
                else:
                    st.error(result)

            except Exception as e:
                st.error(f"❌ Error: {e}")


if selected == 'Asthma Prediction':
    st.title('🌬️ Asthma Prediction using ML')
    st.image("https://cdn-icons-png.flaticon.com/512/3462/3462191.png", width=100)

    st.markdown("""
    This model predicts the likelihood of **Asthma** based on health factors.  
    Enter your details and click **"Asthma Test Result"** to get the prediction.
    """)

    col1, col2 = st.columns(2)

    with col1:
        Gender_Male = st.radio("Gender", ["Female", "Male"])
        Gender_Male = 1 if Gender_Male == "Male" else 0

        Smoking_Status = st.radio("Smoking Status", ["Non-Smoker", "Ex-Smoker"])
        Smoking_Status_Ex_Smoker = 1 if Smoking_Status == "Ex-Smoker" else 0
        Smoking_Status_Non_Smoker = 1 if Smoking_Status == "Non-Smoker" else 0

    with col2:
        # Use actual age as input instead of normalized value
        actual_age = st.slider("Age", min_value=18, max_value=85, value=40, help="Your actual age in years")
        
        # Convert actual age to normalized value (0.0 to 0.914894)
        # Assuming normalization was done with min_age=18 and max_age=90
        min_age = 18
        max_age = 90
        Age = (actual_age - min_age) / (max_age - min_age)
        
        # Show the normalized value for reference (can be hidden in final version)
        st.info(f"Normalized age value (used by model): {Age:.6f}")
        
        Peak_Flow = st.slider("Peak Flow (L/sec)", min_value=0.1, max_value=1.0, value=0.5)

    with col1:
        if st.button('Asthma Test Result'):
            try:
                # Prepare raw input
                raw_input = np.array([[Gender_Male, Smoking_Status_Ex_Smoker, Smoking_Status_Non_Smoker, Age, Peak_Flow]])

                # Check if preprocessing is needed
                if prep_asthama is not None and hasattr(prep_asthama, "transform"):
                    processed_input = prep_asthama.transform(raw_input)  # Use transform if prep_asthama exists
                else:
                    processed_input = raw_input  # If no scaler, use raw input

                with st.spinner("⏳ Predicting... Please wait..."):
                    time.sleep(2)  # Simulating delay (remove in actual use)
                    asthma_prediction = asthama_model.predict(processed_input)

                result = "πŸ›‘ High risk of asthma" if asthma_prediction[0] == 1 else "βœ… Low risk of asthma"
                if asthma_prediction[0] == 0:
                    # st.balloons()
                    st.success(result)
                else:
                    st.error(result)
                
                # Add risk factor analysis
                st.subheader("Risk Factor Analysis")
                risk_factors = []
                
                if actual_age > 60:
                    risk_factors.append("⚠️ Age is a risk factor for asthma")
                if Smoking_Status == "Ex-Smoker":
                    risk_factors.append("⚠️ Smoking history increases asthma risk")
                if Peak_Flow < 0.5:
                    risk_factors.append("⚠️ Low peak flow readings may indicate restricted airways")
                
                if risk_factors:
                    for factor in risk_factors:
                        st.markdown(factor)
                else:
                    st.markdown("βœ… No significant risk factors identified")

            except Exception as e:
                st.error(f"❌ Error: {e}")
                st.info("If you have access to the preprocessing pipeline, you can check the exact age normalization formula used during model training.")


if selected == 'Cardiovascular Disease Prediction':
    st.title('❀️ Cardiovascular Disease Prediction')
    st.image("https://cdn-icons-png.flaticon.com/512/2919/2919950.png", width=100)

    st.markdown("""
    This model predicts the likelihood of **Cardiovascular Disease** based on various health parameters.  
    Please enter the required medical details below and click **"Cardio Test Result"** to get the prediction.
    """)

    # Input Fields
    col1, col2 = st.columns(2)

    with col1:
        age = st.number_input("Age", min_value=29, max_value=64, value=40, step=1)
        ap_hi = st.slider("Systolic Blood Pressure (ap_hi)", min_value=90, max_value=180, value=120)
        ap_lo = st.slider("Diastolic Blood Pressure (ap_lo)", min_value=60, max_value=120, value=80)
        weight = st.number_input("Weight (kg)", min_value=40.0, max_value=180.0, value=70.0, step=0.1)

    with col2:
        cholesterol = st.radio("Cholesterol Level", ["Normal", "Above Normal", "Well Above Normal"])
        cholesterol = {"Normal": 1, "Above Normal": 2, "Well Above Normal": 3}[cholesterol]

        gluc = st.radio("Glucose Level", ["Normal", "Above Normal", "Well Above Normal"])
        gluc = {"Normal": 1, "Above Normal": 2, "Well Above Normal": 3}[gluc]

        smoke = st.radio("Smoking Status", ["No", "Yes"])
        smoke = 1 if smoke == "Yes" else 0

        alco = st.radio("Alcohol Consumption", ["No", "Yes"])
        alco = 1 if alco == "Yes" else 0

        active = st.radio("Physically Active", ["No", "Yes"])
        active = 1 if active == "Yes" else 0

    # Prediction Button
    if st.button('Cardio Test Result'):
        try:
            # Preparing Input Data
            input_data = np.array([[age, ap_hi, ap_lo, cholesterol, gluc, smoke, alco, active, weight]])

            with st.spinner("⏳ Predicting... Please wait..."):
                time.sleep(2)  # Simulating Model Inference
                cardio_prediction = cardio_model.predict(input_data)

            # Display Result
            result = "πŸ›‘ High risk of cardiovascular disease" if cardio_prediction[0] == 1 else "βœ… Low risk of cardiovascular disease"
            if cardio_prediction[0] == 0:
                # st.balloons()
                st.success(result)

        except Exception as e:
            st.error(f"❌ Error: {e}")





if selected == 'Stroke Prediction':
    st.title('🧠 Stroke Prediction using ML')
    st.image("https://cdn-icons-png.flaticon.com/512/3209/3209265.png", width=100)

    st.markdown("""
    This model predicts the likelihood of **Stroke** based on various health factors.  
    Enter your details and click **"Stroke Test Result"** to get the prediction.
    """)

    col1, col2 = st.columns(2)

    with col1:
        Age = st.number_input("Age", min_value=0, max_value=82, value=50, step=1)
        Hypertension = st.radio("Hypertension", ["No", "Yes"])
        Hypertension = 1 if Hypertension == "Yes" else 0

        Heart_Disease = st.radio("Heart Disease", ["No", "Yes"])
        Heart_Disease = 1 if Heart_Disease == "Yes" else 0

    with col2:
        Ever_Married = st.radio("Ever Married", ["No", "Yes"])
        Ever_Married = 1 if Ever_Married == "Yes" else 0

        Avg_Glucose_Level = st.slider("Average Glucose Level", min_value=55.23, max_value=267.61, value=120.0)
        BMI = st.slider("BMI", min_value=13.5, max_value=97.6, value=25.0)

        Smoking_Status = st.selectbox("Smoking Status", ["Never Smoked", "Former Smoker", "Smokes", "Unknown"])
        Smoking_Status = {"Never Smoked": 0, "Former Smoker": 1, "Smokes": 2, "Unknown": 3}[Smoking_Status]

    with col1:
        if st.button('Stroke Test Result'):
            try:
                input_data = np.array([[Age, Hypertension, Heart_Disease, Ever_Married, Avg_Glucose_Level, BMI, Smoking_Status]])

                with st.spinner("⏳ Predicting... Please wait..."):
                    time.sleep(2)
                    stroke_prediction = stroke_model.predict(input_data)

                result = "πŸ›‘ High risk of stroke" if stroke_prediction[0] == 1 else "βœ… Low risk of stroke"
                if stroke_prediction[0] == 0:
                    st.balloons()
                st.success(result)

            except Exception as e:
                st.error(f"❌ Error: {e}")




if selected == 'Data Visualization':
    # st.set_page_config(page_title="Data Visualizer",
    #                 page_icon="πŸ“Š", layout="centered")
    st.title(" πŸ“Š Data Visualization")

    working_dir = os.path.dirname(os.path.abspath(__file__))

    folder_path = f"{working_dir}/data_csv"

    files_list = [f for f in os.listdir(folder_path) if f.endswith('.csv')]

    selected_file = st.selectbox("Select a file", files_list, index=None)

    if selected_file:

        file_path = os.path.join(folder_path, selected_file)

        df = pd.read_csv(file_path)

        columns = df.columns.tolist()

        col1, col2 = st.columns(2)

        with col1:
            st.write("")
            st.write(df.head())

        with col2:
            x_axis = st.selectbox("Select X-axis", options=columns + ["None"])
            y_axis = st.selectbox("Select Y-axis", options=columns + ["None"])

            plot_list = ["Line Plot", "Bar Plot", "Scatter Plot", "Histogram", "Box Plot", "Distribution Plot", "Count Plot", "Pair Plot"]

            selected_plot = st.selectbox("Select a plot", options=plot_list, index=None)

            # st.write(x_axis)
            # st.write(y_axis)
            # st.write(selected_plot)

        if st.button("Generate Plot"):

            fig, ax = plt.subplots(figsize=(6,4))

            if selected_plot == "Line Plot":
                sns.lineplot(x=x_axis, y=y_axis, data=df, ax=ax)

            elif selected_plot == "Bar Plot":
                sns.barplot(x=x_axis, y=y_axis, data=df, ax=ax)
            
            elif selected_plot == "Scatter Plot":
                sns.scatterplot(x=x_axis, y=y_axis, data=df, ax=ax)
            
            elif selected_plot == "Histogram":
                sns.histplot(df[x_axis], ax=ax)
            
            elif selected_plot == "Box Plot":
                sns.boxplot(x=x_axis, y=y_axis, data=df, ax=ax)

            elif selected_plot == "Distribution Plot":
                sns.kdeplot(df[x_axis], ax=ax)
            
            elif selected_plot == "Count Plot":
                sns.countplot(x=x_axis, data=df, ax=ax)
            
            elif selected_plot == "Pair Plot":
                sns.pairplot(df, ax=ax)

            ax.tick_params(axis="x", labelsize=10)
            ax.tick_params(axis="y", labelsize=10)

            plt.title(f"{selected_plot} of {x_axis} vs {y_axis}", fontsize=12)
            plt.xlabel(x_axis, fontsize=10)
            plt.ylabel(y_axis, fontsize=10)
            
            st.pyplot(fig)






import torch
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer

import os
from huggingface_hub import login

# login(token=os.environ.get("HF_TOKEN"))

hf_token = os.environ.get("HF_TOKEN")


try:
    # For Streamlit Cloud or Spaces deployment
    hf_token = st.secrets["HF_TOKEN"]
except:
    # Fallback to environment variables for local development
    hf_token = os.environ.get("HF_TOKEN")

if hf_token:
    login(token=hf_token)
else:
    st.warning("Hugging Face token not found. Some features may not work correctly.")


# if selected == 'Mental-Analysis':
#     # Load the Hugging Face model
#     model_name = "mental/mental-roberta-base"
#     tokenizer = AutoTokenizer.from_pretrained(model_name)
#     model = AutoModelForSequenceClassification.from_pretrained(model_name)


if selected == 'Mental-Analysis':
    # Load the Hugging Face model
    try:
        model_name = "mental/mental-roberta-base"
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForSequenceClassification.from_pretrained(model_name)
    except Exception as e:
        st.error(f"Error loading mental health model: {e}")
        st.info("Please check your Hugging Face token configuration.")
    # Sidebar with title and markdown
    st.sidebar.title("🧠 Mental Health Analysis")
    st.sidebar.markdown("""
    Analyze mental health symptoms using a **pre-trained AI model**.  
    This tool predicts **Depression and Anxiety** based on text input.
    """)

    # Main content
    st.title("πŸ”¬ Mental Health Text Analysis")
    st.markdown("Enter a description of your mental state, and the AI will predict possible conditions.")

    # User input
    user_input = st.text_area("Describe your symptoms (e.g., 'I feel hopeless and anxious all the time.'):")
    
    if st.button("Analyze"):
        if user_input:
            # Tokenize input
            inputs = tokenizer(user_input, return_tensors="pt", truncation=True, padding=True)

            # Get raw logits from the model
            with torch.no_grad():
                outputs = model(**inputs)
            logits = outputs.logits

            # Apply sigmoid activation to get independent probabilities
            probs = torch.sigmoid(logits).squeeze().tolist()

            # Map to labels
            label_mapping = {
                0: "Depression",
                1: "Anxiety"
            }
            predictions = {label_mapping[i]: round(probs[i] * 100, 2) for i in range(len(probs))}

            # Display predictions
            st.write("### Predictions:")
            for label, score in predictions.items():
                st.write(f"🩺 **{label}**: {score}% confidence")

            # Sort for better visualization
            sorted_labels = sorted(predictions.keys(), key=lambda x: predictions[x], reverse=True)
            sorted_scores = [predictions[label] for label in sorted_labels]

            # Plot using Seaborn
            fig, ax = plt.subplots(figsize=(4, 2.5))  # Compact size
            sns.barplot(x=sorted_scores, y=sorted_labels, palette="coolwarm", ax=ax)

            # Labels & title
            ax.set_xlabel("Risk Probability (%)")
            ax.set_title("Mental Health Risk Assessment")
            ax.set_xlim(0, 100)
            
            # Add percentages inside bars
            for i, (score, label) in enumerate(zip(sorted_scores, sorted_labels)):
                ax.text(score - 5, i, f"{score}%", va='center', ha='right', color='white', fontsize=10, fontweight='bold')

            # Display the chart in a single column
            st.pyplot(fig)


if selected == 'Sleep Health Analysis':
    st.title("πŸŒ™ Sleep Health Analysis")
    st.image("https://cdn-icons-png.flaticon.com/512/1205/1205526.png", width=100)
    
    st.markdown("""
    This model predicts the likelihood of **Sleep Disorders** based on various health factors.  
    Enter your details and click **"Sleep Health Test Result"** to get the prediction.
    """)

    # Load models
    try:
        sleep_model = pickle.load(open('sleep_health/svc_model.pkl', 'rb'))
        scaler = pickle.load(open('sleep_health/scaler.pkl', 'rb'))
        label_encoder = pickle.load(open('sleep_health/label_encoders.pkl', 'rb'))
    except FileNotFoundError:
        st.error("Error: Model files not found. Please upload the model files.")
        st.stop()

    # Input fields for user data
    col1, col2 = st.columns(2)

    with col1:
        gender = st.selectbox('Gender', ['Male', 'Female'], key='gender_sleep')
        age = st.slider("Age", min_value=27, max_value=59, value=35, 
                      help="Age range in dataset: 27-59 years", key='age_sleep')
        occupation = st.selectbox("Occupation", 
            ['Software Engineer', 'Doctor', 'Sales Representative', 'Teacher', 'Business',
             'Scientist', 'Accountant', 'Engineer'], key='occupation_sleep')
        sleep_duration = st.slider("Sleep Duration (hours)", 
            min_value=5.8, max_value=8.5, value=6.5, step=0.1,
            help="Dataset range: 5.8-8.5 hours", key='sleep_duration')
        quality_of_sleep = st.slider('Quality of Sleep', 
            min_value=4, max_value=9, value=6,
            help="Higher is better (4-9 scale)", key='quality_sleep')
        physical_activity_level = st.slider('Physical Activity Level (minutes/day)', 
            min_value=30, max_value=90, value=45,
            help="Physical activity in minutes per day", key='activity_sleep')

    with col2:
        stress_level = st.slider('Stress Level', 
            min_value=3, max_value=8, value=6, 
            help="Higher values indicate higher stress (3-8 scale)", key='stress_sleep')
        bmi_category = st.selectbox("BMI Category", 
            ["Normal", "Overweight", "Obese"], key='bmi_sleep')
        
        # For blood pressure, let's use two separate inputs for systolic/diastolic
        col2a, col2b = st.columns(2)
        with col2a:
            systolic = st.slider("Blood Pressure (Systolic)", 
                min_value=110, max_value=140, value=125, key='bp_sys_sleep')
        with col2b:
            diastolic = st.slider("Diastolic", 
                min_value=70, max_value=95, value=80, key='bp_dia_sleep')
        
        blood_pressure = f"{systolic}/{diastolic}"
        
        heart_rate = st.slider("Heart Rate (bpm)", 
            min_value=65, max_value=86, value=75, 
            help="Normal range: 60-100 bpm", key='hr_sleep')
        daily_steps = st.slider("Daily Steps", 
            min_value=3000, max_value=10000, value=6000, step=500,
            help="Recommended: 7,000-10,000 steps/day", key='steps_sleep')

    # Create a button to trigger prediction
    if st.button('Sleep Health Test Result', key='sleep_test_button'):
        try:
            # Prepare input data
            input_data = {
                'Gender': gender,
                'Age': age,
                'Occupation': occupation,
                'Sleep Duration': sleep_duration,
                'Quality of Sleep': quality_of_sleep,
                'Physical Activity Level': physical_activity_level,
                'Stress Level': stress_level,
                'BMI Category': bmi_category,
                'Blood Pressure': blood_pressure,
                'Heart Rate': heart_rate,
                'Daily Steps': daily_steps
            }
            
            # Process and predict
            df = pd.DataFrame([input_data])
            
            # Apply label encoding to categorical features
            for col, encoder in label_encoder.items():
                if col in df.columns:
                    df[col] = encoder.transform([df[col].iloc[0]])[0]
            
            # Feature Engineering and Preprocessing
            columns_to_drop = ["Physical Activity Level", "Person ID"]
            for col in columns_to_drop:
                if col in df.columns:
                    df = df.drop(columns=[col])
            
            # Create dummy variables with the correct column names expected by the model
            df = pd.get_dummies(df)
            
            # Get the expected feature names from the model
            # You might need to store these feature names during training
            expected_features = [
                'Age', 'Sleep Duration', 'Quality of Sleep', 'Stress Level',
                'Heart Rate', 'Daily Steps', 'Gender_Female', 'Gender_Male',
                'Occupation_Accountant', 'Occupation_Business', 'Occupation_Doctor',
                'Occupation_Engineer', 'Occupation_Sales Representative', 
                'Occupation_Scientist', 'Occupation_Software Engineer', 'Occupation_Teacher',
                'BMI Category_Normal', 'BMI Category_Obese', 'BMI Category_Overweight',
                'Blood Pressure_110/70', 'Blood Pressure_120/80', 'Blood Pressure_125/80',
                'Blood Pressure_130/85', 'Blood Pressure_140/90'
            ]
            
            # Create a DataFrame with expected features filled with zeros
            prediction_df = pd.DataFrame(0, index=[0], columns=expected_features)
            
            # Fill in the values from our current DataFrame
            for col in df.columns:
                if col in prediction_df.columns:
                    prediction_df[col] = df[col].values
                    
            # Scale with proper error handling
            with st.spinner("⏳ Predicting... Please wait..."):
                time.sleep(2)
                # Use the properly formatted DataFrame
                prediction = sleep_model.predict(prediction_df)
            
            # Display result
            result = "πŸ›‘ High risk of sleep disorder" if prediction[0] == 1 else "βœ… Low risk of sleep disorder"
            if prediction[0] == 0:
                st.balloons()
            st.success(result)
            
            # Show risk factors based on input
            st.subheader("Risk Factor Analysis")
            risk_factors = []
            
            if sleep_duration < 6.0:
                risk_factors.append("⚠️ Low sleep duration (less than 6 hours)")
            if quality_of_sleep < 6:
                risk_factors.append("⚠️ Poor sleep quality")
            if stress_level > 6:
                risk_factors.append("⚠️ High stress levels")
            if bmi_category in ["Overweight", "Obese"]:
                risk_factors.append(f"⚠️ {bmi_category} BMI category")
            if int(systolic) > 130 or int(diastolic) > 85:
                risk_factors.append("⚠️ Elevated blood pressure")
            if heart_rate > 80:
                risk_factors.append("⚠️ Elevated heart rate")
            if daily_steps < 5000:
                risk_factors.append("⚠️ Low daily activity (steps)")
                
            if risk_factors:
                st.markdown("##### Potential Risk Factors:")
                for factor in risk_factors:
                    st.markdown(factor)
            else:
                st.markdown("βœ… No significant risk factors identified.")

        except Exception as e:
            st.error(f"❌ Error: {e}")




if selected=='Hypertension Prediction':
    st.title("Hypertension Risk Prediction App")
    st.markdown("This application uses an Extra Trees Classifier model to predict hypertension risk based on patient health data.")

    # Load the model and scaler
    try:
        hypertension_model = pickle.load(open('hypertension/extratrees_model.pkl', 'rb'))
        hypertension_scaler = pickle.load(open('hypertension/scaler.pkl', 'rb'))
        st.success("Model and scaler loaded successfully!")
    except Exception as e:
        st.error(f"Error loading model or scaler: {e}")
        st.info("Please check that model and scaler files are in the correct location.")
        st.warning("Expected path: 'hypertension/extratrees_model.pkl' and 'hypertension/scaler.pkl'")

    # Define input section
    st.subheader("Patient Information")

    # Create two columns for input layout
    col1, col2 = st.columns(2)

    with col1:
        male = st.radio("Gender", options=[0, 1], format_func=lambda x: "Female" if x == 0 else "Male")
        age = st.slider("Age", min_value=32, max_value=70, value=49, help="Patient's age (32-70 years)")
        cigs_per_day = st.slider("Cigarettes Per Day", min_value=0.0, max_value=70.0, value=0.0, step=1.0)
        bp_meds = st.radio("On Blood Pressure Medication", options=[0.0, 1.0], format_func=lambda x: "No" if x == 0.0 else "Yes")
        tot_chol = st.slider("Total Cholesterol", min_value=107.0, max_value=500.0, value=234.0, step=1.0, help="mg/dL")

    with col2:
        sys_bp = st.slider("Systolic Blood Pressure", min_value=83.5, max_value=295.0, value=128.0, step=0.5, help="mmHg")
        dia_bp = st.slider("Diastolic Blood Pressure", min_value=48.0, max_value=142.5, value=82.0, step=0.5, help="mmHg")
        bmi = st.slider("BMI", min_value=15.54, max_value=56.80, value=25.40, step=0.01)
        heart_rate = st.slider("Heart Rate", min_value=44.0, max_value=143.0, value=75.0, step=1.0, help="beats per minute")
        glucose = st.slider("Glucose", min_value=40.0, max_value=394.0, value=78.0, step=1.0, help="mg/dL")

    # Prediction button
    predict_button = st.button("Predict Hypertension Risk")

    if predict_button:
        # Create input dataframe
        input_data = pd.DataFrame({
            'male': [male],
            'age': [age],
            'cigsPerDay': [cigs_per_day],
            'BPMeds': [bp_meds],
            'totChol': [tot_chol],
            'sysBP': [sys_bp],
            'diaBP': [dia_bp],
            'BMI': [bmi],
            'heartRate': [heart_rate],
            'glucose': [glucose]
        })
        
        # Display input data
        st.subheader("Input Data:")
        st.dataframe(input_data)
        
        # Identify numerical columns to scale
        num_cols = ['age', 'cigsPerDay', 'totChol', 'sysBP', 'diaBP', 'BMI', 'heartRate', 'glucose']
        
        try:
            # Scale the numerical features
            input_data[num_cols] = hypertension_scaler.transform(input_data[num_cols])
            
            # Make prediction
            prediction = hypertension_model.predict(input_data)[0]
            prediction_prob = hypertension_model.predict_proba(input_data)[0]
            
            # Display prediction results
            st.subheader("Prediction Result:")
            
            # Create columns for results
            res_col1, res_col2 = st.columns(2)
            
            with res_col1:
                if prediction == 0:
                    st.success("βœ… Low Risk of Hypertension")
                else:
                    st.error("🚨 High Risk of Hypertension")
            
            with res_col2:
                # Visualization
                st.write(f"Probability of Low Risk: {prediction_prob[0]:.2f}")
                st.write(f"Probability of High Risk: {prediction_prob[1]:.2f}")
                
                # Add progress bar
                st.progress(float(prediction_prob[1]))
        
        except Exception as e:
            st.error(f"Error during prediction: {e}")
        # st.info("Please check that all inputs are valid and within the expected ranges.")


if selected == 'Medical Consultant':
    st.title("🩺 Medical Consultant Chatbot")
    st.markdown("### Discuss Your Health Concerns with Our AI-powered Chatbot")
    st.write("Our AI can help with **medical questions, symptom analysis, and health recommendations**.")
    
    # Initialize API
    genai.configure(api_key="AIzaSyAcXexC7cNXrRTCYj6Dg7ZFYVQZH8a5PMw")  # Replace with your actual API key

    # Custom Styling for suggestions
    st.markdown("""
        <style>
            .prompt-box { 
                background-color: #222222; 
                padding: 12px; 
                border-radius: 8px; 
                font-size: 14px; 
                font-family: sans-serif;
                margin-bottom: 10px;
                border: 1px solid #444444;
                text-align: center;
                cursor: pointer;
            }
            .prompt-box:hover {
                background-color: #333333;
            }
        </style>
    """, unsafe_allow_html=True)
    
    # Common medical questions as suggestions
    st.markdown("#### πŸ’‘ Common Health Questions")
    
    prompt_options = [
        ("Diabetes", "What are early warning signs of diabetes?"),
        ("Hypertension", "How can I manage my blood pressure naturally?"),
        ("Heart Health", "What lifestyle changes help reduce cardiovascular risk?"),
        ("Asthma", "What triggers asthma attacks and how can I prevent them?"),
        ("Stroke", "What are the warning signs of a stroke?"),
        ("Sleep Health", "How does poor sleep affect my overall health?"),
        ("Mental Health", "What are common symptoms of anxiety?"),
        ("Preventive Care", "What preventive screenings should I get at my age?"),
        ("Exercise", "How much exercise do I need for good health?"),
        ("Nutrition", "What diet changes can improve my heart health?")
    ]
    
    # Display prompts in two columns
    cols = st.columns(2)
    for i in range(0, len(prompt_options), 2):
        with cols[0]: 
            if i < len(prompt_options):
                label, prompt = prompt_options[i]
                st.markdown(f"""<div class="prompt-box" onclick="document.querySelector('#medical-chat-input').value='{prompt}';"><strong>{label}</strong><br>{prompt}</div>""", unsafe_allow_html=True)
        
        with cols[1]: 
            if i+1 < len(prompt_options):
                label, prompt = prompt_options[i+1]
                st.markdown(f"""<div class="prompt-box" onclick="document.querySelector('#medical-chat-input').value='{prompt}';"><strong>{label}</strong><br>{prompt}</div>""", unsafe_allow_html=True)
    
    # Initialize chat history if not present
    if "medical_chat_history" not in st.session_state:
        st.session_state.medical_chat_history = []
        # Add welcome message
        welcome_msg = {
            "role": "assistant", 
            "content": """πŸ‘‹ Welcome to your Medical Consultant! I can help answer questions about:

- Health concerns and symptoms
- Disease prevention and management
- Lifestyle recommendations
- Understanding medical conditions
            
How can I assist with your health questions today?"""
        }
        st.session_state.medical_chat_history.append(welcome_msg)
    
    # Chat container
    chat_container = st.container()
    with chat_container:
        # Display previous chat history
        for message in st.session_state.medical_chat_history:
            with st.chat_message(message["role"]):
                st.markdown(message["content"])
    
    # User input field
    user_prompt = st.chat_input("Ask about health concerns, symptoms, or lifestyle questions...", key="medical-chat-input")
    
    # Define medical topics for feature recommendations
    medical_topics = {
        "diabetes": "Diabetes Prediction",
        "blood sugar": "Diabetes Prediction",
        "hypertension": "Hypertension Prediction",
        "blood pressure": "Hypertension Prediction", 
        "heart": "Cardiovascular Disease Prediction",
        "cardiovascular": "Cardiovascular Disease Prediction",
        "asthma": "Asthma Prediction",
        "breathing": "Asthma Prediction",
        "stroke": "Stroke Prediction",
        "sleep": "Sleep Health Analysis",
        "insomnia": "Sleep Health Analysis",
        "mental health": "Mental-Analysis",
        "depression": "Mental-Analysis",
        "anxiety": "Mental-Analysis",
        "stress": "Mental-Analysis"
    }
    
    if user_prompt:
        # Add user message to chat
        st.session_state.medical_chat_history.append({"role": "user", "content": user_prompt})
        
        # Display user message in chat
        with st.chat_message("user"):
            st.markdown(user_prompt)
        
        try:
            # Create system instruction
            system_instruction = """You are a medical consultant chatbot designed to provide helpful health information.
            
RULES:
- Provide accurate, concise medical information based on current scientific understanding
- Answer questions about symptoms, diseases, prevention, and health management
- Keep responses informative but brief (under 150 words)
- When uncertain, acknowledge limitations and recommend consulting a healthcare professional
- Avoid making definitive diagnoses or treatment recommendations
- Never claim to be an AI or language model - respond directly as a medical consultant
- Always clarify that your advice is informational and not a substitute for professional medical care
- When describing medical conditions, focus on factual information about symptoms, risk factors, and prevention
- Maintain a professional, empathetic tone
- If the user mentions specific symptoms, acknowledge them and provide information about possible causes
- Respond in a doctor-like manner when assessing symptoms or risk factors
- Use your knowledge to identify if the user's query relates to any specific medical conditions
- Do not suggest our prediction tools in every response - only when truly relevant

The user is interacting with a health prediction platform that offers the following tools:
- Diabetes Prediction
- Hypertension Prediction 
- Cardiovascular Disease Prediction
- Asthma Prediction
- Stroke Prediction
- Sleep Health Analysis
- Mental Health Analysis

TASK: First, determine if the user's query contains symptoms or mentions specific health conditions. If so, provide a doctor-like assessment. Only if appropriate, subtly suggest one of our health prediction tools at the end of your response.
"""

            # Generate a response using Gemini
            model = genai.GenerativeModel("gemini-2.0-flash")
            
            # Prepare chat context
            chat_context = []
            for msg in st.session_state.medical_chat_history[-5:]:  # Last 5 messages for context
                if msg["role"] == "user":
                    chat_context.append(f"User: {msg['content']}")
                else:
                    chat_context.append(f"Medical Consultant: {msg['content']}")
            
            # Add current query with additional analysis request
            full_prompt = f"""{system_instruction}

CONVERSATION HISTORY:
{chr(10).join(chat_context)}

USER QUERY: {user_prompt}

ANALYSIS INSTRUCTIONS:
1. First, determine if this query relates to any specific health conditions or symptoms
2. Provide a helpful medical response addressing the user's concerns
3. If appropriate, subtly suggest one relevant prediction tool at the end of your response (only if truly related)
4. Remember to be professional and avoid making definitive diagnoses
"""
            
            # Generate response
            response = model.generate_content(full_prompt)
            
            if response and hasattr(response, "text"):
                assistant_response = response.text
            else:
                assistant_response = "I'm sorry, I couldn't generate a response. Please try asking a different health-related question."
            
            # Save and display response
            st.session_state.medical_chat_history.append({"role": "assistant", "content": assistant_response})
            
            with st.chat_message("assistant"):
                st.markdown(assistant_response)
            
        except Exception as e:
            error_msg = f"I apologize, but I'm having trouble processing your request right now. Please try again with a different question."
            st.session_state.medical_chat_history.append({"role": "assistant", "content": error_msg})
            
            with st.chat_message("assistant"):
                st.markdown(error_msg)
        
        # Force refresh to update the chat
        st.rerun()