KeerthiVM's picture
RAG fix
dc9062b
raw
history blame contribute delete
15.3 kB
import streamlit as st
from PIL import Image
import torch
import cohere
import torch.nn as nn
from torchvision import transforms
from torchvision.models import vit_b_16, vit_l_16, ViT_B_16_Weights, ViT_L_16_Weights
import pandas as pd
from huggingface_hub import hf_hub_download
from langchain_huggingface import HuggingFaceEmbeddings
import io
import os
import base64
from fpdf import FPDF
from sqlalchemy import create_engine
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from sentence_transformers import SentenceTransformer
# from langchain_community.vectorstores.pgvector import PGVector
# from langchain_postgres import PGVector
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_community.vectorstores import Qdrant
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.embeddings import SentenceTransformerEmbeddings
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM
import nest_asyncio
torch.cuda.empty_cache()
nest_asyncio.apply()
co = cohere.Client(st.secrets["COHERE_API_KEY"])
st.set_page_config(page_title="DermBOT", page_icon="🧬", layout="centered")
# === Model Selection ===
available_models = ["GPT-4o", "LLaMA 4 Maverick", "Gemini 2.5 Pro", "All"]
st.session_state["selected_model"] = st.sidebar.selectbox("Select LLM Model", available_models)
# === Qdrant DB Setup ===
qdrant_client = QdrantClient(
url="https://2715ddd8-647f-40ee-bca4-9027d193e8aa.us-east-1-0.aws.cloud.qdrant.io",
api_key="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.HXzezXdWMFeeR16F7zvqgjzsqrcm8hqa-StXdToFP9Q"
)
collection_name = "ks_collection_1.5BE"
# embedding_model = SentenceTransformer("D:\DR\RAG\gte-Qwen2-1.5B-instruct", trust_remote_code=True)
# embedding_model.max_seq_length = 8192
# local_embedding = SentenceTransformerEmbeddings(model=embedding_model)
device = "cuda" if torch.cuda.is_available() else "cpu"
def get_safe_embedding_model():
model_name = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"
try:
print("Trying to load embedding model on CUDA...")
embedding = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs={
"trust_remote_code": True,
"device": "cuda"
}
)
print("Loaded embedding model on GPU.")
return embedding
except RuntimeError as e:
if "CUDA out of memory" in str(e):
print("CUDA OOM. Falling back to CPU.")
else:
print(" Error loading model on CUDA:", str(e))
print("Loading embedding model on CPU...")
return HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs={
"trust_remote_code": True,
"device": "cpu"
}
)
# Replace your old local_embedding line with this
local_embedding = get_safe_embedding_model()
print(" Qwen2-1.5B local embedding model loaded.")
vector_store = Qdrant(
client=qdrant_client,
collection_name=collection_name,
embeddings=local_embedding
)
retriever = vector_store.as_retriever()
pair_ranker = pipeline(
"text-classification",
model="llm-blender/PairRM",
tokenizer="llm-blender/PairRM",
return_all_scores=True
)
gen_fuser = pipeline(
"text-generation",
model="llm-blender/gen_fuser_3b",
tokenizer="llm-blender/gen_fuser_3b",
max_length=2048,
do_sample=False
)
# selected_model = st.session_state["selected_model"]
if "OpenAI" in selected_model:
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-4o", temperature=0.2, api_key=st.secrets["OPENAI_API_KEY"])
elif "LLaMA" in selected_model:
from groq import Groq
client = Groq(api_key=st.secrets["GROQ_API_KEY"]) # Store in `.streamlit/secrets.toml`
def get_llama_response(prompt):
completion = client.chat.completions.create(
model="meta-llama/llama-4-maverick-17b-128e-instruct",
messages=[{"role": "user", "content": prompt}],
temperature=1,
max_completion_tokens=1024,
top_p=1,
stream=False
)
return completion.choices[0].message.content
llm = get_llama_response # use this in place of llm.invoke()
elif "Gemini" in selected_model:
import google.generativeai as genai
genai.configure(api_key=st.secrets["GEMINI_API_KEY"]) # Store in `.streamlit/secrets.toml`
gemini_model = genai.GenerativeModel("gemini-2.5-pro-exp-03-25")
def get_gemini_response(prompt):
response = gemini_model.generate_content(prompt)
return response.text
llm = get_gemini_response
elif "All" in selected_model:
from groq import Groq
import google.generativeai as genai
genai.configure(api_key=st.secrets["GEMINI_API_KEY"])
def get_all_model_responses(prompt):
openai_resp = ChatOpenAI(model="gpt-4o", temperature=0.2, api_key=st.secrets["OPENAI_API_KEY"]).invoke(
[{"role": "system", "content": prompt}]).content
gemini = genai.GenerativeModel("gemini-2.5-pro-exp-03-25")
gemini_resp = gemini.generate_content(prompt).text
llama = Groq(api_key=st.secrets["GROQ_API_KEY"])
llama_resp = llama.chat.completions.create(
model="meta-llama/llama-4-maverick-17b-128e-instruct",
messages=[{"role": "user", "content": prompt}],
temperature=1, max_completion_tokens=1024, top_p=1, stream=False
).choices[0].message.content
return [openai_resp, gemini_resp, llama_resp]
def rank_and_fuse(prompt, responses):
ranked = [(resp, pair_ranker(f"{prompt}\n\n{resp}")[0][1]['score']) for resp in responses]
ranked.sort(key=lambda x: x[1], reverse=True)
fusion_input = "\n\n".join([f"[Answer {i + 1}]: {ans}" for i, (ans, _) in enumerate(ranked)])
return gen_fuser(f"Fuse these responses:\n{fusion_input}", return_full_text=False)[0]['generated_text']
else:
st.error("Unsupported model selected.")
st.stop()
# retriever = vector_store.as_retriever()
AI_PROMPT_TEMPLATE = """
You are DermBOT, a compassionate and knowledgeable AI Dermatology Assistant designed to educate users about skin-related health concerns with clarity, empathy, and precision.
Your goal is to respond like a well-informed human expertβ€”balancing professionalism with warmth and reassurance.
When crafting responses:
- Begin with a clear, engaging summary of the condition or concern.
- Use short paragraphs for readability.
- Include bullet points or numbered lists where appropriate.
- Avoid overly technical terms unless explained simply.
- End with a helpful next step, such as lifestyle advice or when to see a doctor.
🩺 Response Structure:
1. **Overview** β€” Briefly introduce the condition or concern.
2. **Common Symptoms** β€” Describe noticeable signs in simple terms.
3. **Causes & Risk Factors** β€” Include genetic, lifestyle, and environmental aspects.
4. **Treatment Options** β€” Outline common OTC and prescription treatments.
5. **When to Seek Help** β€” Warn about symptoms that require urgent care.
Always encourage consulting a licensed dermatologist for personal diagnosis and treatment. For any breathing difficulties, serious infections, or rapid symptom worsening, advise calling emergency services immediately.
---
Query: {question}
Relevant Context: {context}
Your Response:
"""
prompt_template = PromptTemplate(template=AI_PROMPT_TEMPLATE, input_variables=["question", "context"])
# rag_chain = RetrievalQA.from_chain_type(
# llm=llm,
# retriever=retriever,
# chain_type="stuff",
# chain_type_kwargs={"prompt": prompt_template, "document_variable_name": "context"}
# )
# === Class Names ===
multilabel_class_names = [
"Vesicle", "Papule", "Macule", "Plaque", "Abscess", "Pustule", "Bulla", "Patch",
"Nodule", "Ulcer", "Crust", "Erosion", "Excoriation", "Atrophy", "Exudate", "Purpura/Petechiae",
"Fissure", "Induration", "Xerosis", "Telangiectasia", "Scale", "Scar", "Friable", "Sclerosis",
"Pedunculated", "Exophytic/Fungating", "Warty/Papillomatous", "Dome-shaped", "Flat topped",
"Brown(Hyperpigmentation)", "Translucent", "White(Hypopigmentation)", "Purple", "Yellow",
"Black", "Erythema", "Comedo", "Lichenification", "Blue", "Umbilicated", "Poikiloderma",
"Salmon", "Wheal", "Acuminate", "Burrow", "Gray", "Pigmented", "Cyst"
]
multiclass_class_names = [
"systemic", "hair", "drug_reactions", "uriticaria", "acne", "light",
"autoimmune", "papulosquamous", "eczema", "skincancer",
"benign_tumors", "bacteria_parasetic_infections", "fungal_infections", "viral_skin_infections"
]
# === Load Models ===
class SkinViT(nn.Module):
def __init__(self, num_classes):
super(SkinViT, self).__init__()
self.model = vit_b_16(weights=ViT_B_16_Weights.DEFAULT)
in_features = self.model.heads.head.in_features
self.model.heads.head = nn.Linear(in_features, num_classes)
def forward(self, x):
return self.model(x)
class DermNetViT(nn.Module):
def __init__(self, num_classes):
super(DermNetViT, self).__init__()
self.model = vit_l_16(weights=ViT_L_16_Weights.DEFAULT)
in_features = self.model.heads[0].in_features
self.model.heads[0] = nn.Sequential(
nn.Dropout(0.3),
nn.Linear(in_features, num_classes)
)
def forward(self, x):
return self.model(x)
# multilabel_model = torch.load("D:/DR/RAG/BestModels2703/skin_vit_fold10.pth", map_location='cpu')
# multiclass_model = torch.load("D:/DR/RAG/BestModels2703/best_dermnet_vit.pth", map_location='cpu')
# === Load Model State Dicts ===
multilabel_model_path = hf_hub_download(repo_id="santhoshraghu/DermBOT", filename="skin_vit_fold10_sd.pth")
multiclass_model_path = hf_hub_download(repo_id="santhoshraghu/DermBOT", filename="best_dermnet_vit_sd.pth")
def load_model_with_fallback(model_class, weight_path, num_classes, model_name):
try:
print(f"πŸ” Loading {model_name} on GPU...")
model = model_class(num_classes)
model.load_state_dict(torch.load(weight_path, map_location="cuda"))
model.to("cuda")
print(f"βœ… {model_name} loaded on GPU.")
return model
except RuntimeError as e:
if "CUDA out of memory" in str(e):
print(f"⚠️ {model_name} OOM. Falling back to CPU.")
else:
print(f"❌ Error loading {model_name} on CUDA: {e}")
print(f"πŸ”„ Loading {model_name} on CPU...")
model = model_class(num_classes)
model.load_state_dict(torch.load(weight_path, map_location="cpu"))
model.to("cpu")
return model
# Load both models with fallback
multilabel_model = load_model_with_fallback(SkinViT, multilabel_model_path, len(multilabel_class_names), "SkinViT")
multiclass_model = load_model_with_fallback(DermNetViT, multiclass_model_path, len(multiclass_class_names),
"DermNetViT")
multilabel_model.eval()
multiclass_model.eval()
# === Session Init ===
if "messages" not in st.session_state:
st.session_state.messages = []
# === Image Processing Function ===
def run_inference(image):
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
input_tensor = transform(image).unsqueeze(0)
# Automatically match model device (GPU or CPU)
model_device = next(multilabel_model.parameters()).device
input_tensor = input_tensor.to(model_device)
with torch.no_grad():
probs_multi = torch.sigmoid(multilabel_model(input_tensor)).squeeze().cpu().numpy()
pred_idx = torch.argmax(multiclass_model(input_tensor), dim=1).item()
predicted_multi = [multilabel_class_names[i] for i, p in enumerate(probs_multi) if p > 0.5]
predicted_single = multiclass_class_names[pred_idx]
return predicted_multi, predicted_single
# === PDF Export ===
def export_chat_to_pdf(messages):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
for msg in messages:
role = "You" if msg["role"] == "user" else "AI"
pdf.multi_cell(0, 10, f"{role}: {msg['content']}\n")
buf = io.BytesIO()
pdf.output(buf)
buf.seek(0)
return buf
# Reranker utility
def rerank_with_cohere(query, documents, top_n=5):
if not documents:
return []
raw_texts = [doc.page_content for doc in documents]
results = co.rerank(query=query, documents=raw_texts, top_n=min(top_n, len(raw_texts)), model="rerank-v3.5")
return [documents[result.index] for result in results]
# Final answer generation using reranked context
def get_reranked_response(query):
docs = retriever.get_relevant_documents(query)
reranked_docs = rerank_with_cohere(query, docs)
context = "\n\n".join([doc.page_content for doc in reranked_docs])
prompt = AI_PROMPT_TEMPLATE.format(question=query, context=context)
if selected_model == "All":
responses = get_all_model_responses(prompt)
fused = rank_and_fuse(prompt, responses)
return type("Obj", (), {"content": fused})
if callable(llm):
return type("Obj", (), {"content": llm(prompt)})
else:
return llm.invoke([{"role": "system", "content": prompt}])
# === App UI ===
st.title("🧬 DermBOT β€” Skin AI Assistant")
st.caption(f"🧠 Using model: {selected_model}")
uploaded_file = st.file_uploader("Upload a skin image", type=["jpg", "jpeg", "png"])
if uploaded_file:
st.image(uploaded_file, caption="Uploaded image", use_container_width=True)
image = Image.open(uploaded_file).convert("RGB")
predicted_multi, predicted_single = run_inference(image)
# Show predictions clearly to the user
st.markdown(f"🧾 **Skin Issues**: {', '.join(predicted_multi)}")
st.markdown(f"πŸ“Œ **Most Likely Diagnosis**: {predicted_single}")
query = f"What are my treatment options for {predicted_multi} and {predicted_single}?"
st.session_state.messages.append({"role": "user", "content": query})
with st.spinner("πŸ”Ž Analyzing and retrieving context..."):
response = get_reranked_response(query)
st.session_state.messages.append({"role": "assistant", "content": response.content})
with st.chat_message("assistant"):
st.markdown(response.content)
# === Chat Interface ===
if prompt := st.chat_input("Ask a follow-up..."):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
response = get_reranked_response(prompt)
st.session_state.messages.append({"role": "assistant", "content": response.content})
with st.chat_message("assistant"):
st.markdown(response.content)
# === PDF Button ===
if st.button("πŸ“„ Download Chat as PDF"):
pdf_file = export_chat_to_pdf(st.session_state.messages)
st.download_button("Download PDF", data=pdf_file, file_name="chat_history.pdf", mime="application/pdf")