File size: 15,269 Bytes
dc9062b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import streamlit as st
from PIL import Image
import torch
import cohere
import torch.nn as nn
from torchvision import transforms
from torchvision.models import vit_b_16, vit_l_16, ViT_B_16_Weights, ViT_L_16_Weights
import pandas as pd
from huggingface_hub import hf_hub_download
from langchain_huggingface import HuggingFaceEmbeddings
import io
import os
import base64
from fpdf import FPDF
from sqlalchemy import create_engine
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from sentence_transformers import SentenceTransformer
# from langchain_community.vectorstores.pgvector import PGVector
# from langchain_postgres import PGVector
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_community.vectorstores import Qdrant
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.embeddings import SentenceTransformerEmbeddings
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM
import nest_asyncio

torch.cuda.empty_cache()
nest_asyncio.apply()
co = cohere.Client(st.secrets["COHERE_API_KEY"])

st.set_page_config(page_title="DermBOT", page_icon="๐Ÿงฌ", layout="centered")

# === Model Selection ===
available_models = ["GPT-4o", "LLaMA 4 Maverick", "Gemini 2.5 Pro", "All"]
st.session_state["selected_model"] = st.sidebar.selectbox("Select LLM Model", available_models)

# === Qdrant DB Setup ===
qdrant_client = QdrantClient(
    url="https://2715ddd8-647f-40ee-bca4-9027d193e8aa.us-east-1-0.aws.cloud.qdrant.io",
    api_key="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.HXzezXdWMFeeR16F7zvqgjzsqrcm8hqa-StXdToFP9Q"
)
collection_name = "ks_collection_1.5BE"
# embedding_model = SentenceTransformer("D:\DR\RAG\gte-Qwen2-1.5B-instruct", trust_remote_code=True)
# embedding_model.max_seq_length = 8192
# local_embedding = SentenceTransformerEmbeddings(model=embedding_model)


device = "cuda" if torch.cuda.is_available() else "cpu"


def get_safe_embedding_model():
    model_name = "Alibaba-NLP/gte-Qwen2-1.5B-instruct"

    try:
        print("Trying to load embedding model on CUDA...")
        embedding = HuggingFaceEmbeddings(
            model_name=model_name,
            model_kwargs={
                "trust_remote_code": True,
                "device": "cuda"
            }
        )
        print("Loaded embedding model on GPU.")
        return embedding
    except RuntimeError as e:
        if "CUDA out of memory" in str(e):
            print("CUDA OOM. Falling back to CPU.")
        else:
            print(" Error loading model on CUDA:", str(e))
        print("Loading embedding model on CPU...")
        return HuggingFaceEmbeddings(
            model_name=model_name,
            model_kwargs={
                "trust_remote_code": True,
                "device": "cpu"
            }
        )


# Replace your old local_embedding line with this
local_embedding = get_safe_embedding_model()

print(" Qwen2-1.5B local embedding model loaded.")

vector_store = Qdrant(
    client=qdrant_client,
    collection_name=collection_name,
    embeddings=local_embedding
)
retriever = vector_store.as_retriever()

pair_ranker = pipeline(
    "text-classification",
    model="llm-blender/PairRM",
    tokenizer="llm-blender/PairRM",
    return_all_scores=True
)

gen_fuser = pipeline(
    "text-generation",
    model="llm-blender/gen_fuser_3b",
    tokenizer="llm-blender/gen_fuser_3b",
    max_length=2048,
    do_sample=False
)

# selected_model = st.session_state["selected_model"]

if "OpenAI" in selected_model:
    from langchain_openai import ChatOpenAI

    llm = ChatOpenAI(model="gpt-4o", temperature=0.2, api_key=st.secrets["OPENAI_API_KEY"])

elif "LLaMA" in selected_model:
    from groq import Groq

    client = Groq(api_key=st.secrets["GROQ_API_KEY"])  # Store in `.streamlit/secrets.toml`


    def get_llama_response(prompt):
        completion = client.chat.completions.create(
            model="meta-llama/llama-4-maverick-17b-128e-instruct",
            messages=[{"role": "user", "content": prompt}],
            temperature=1,
            max_completion_tokens=1024,
            top_p=1,
            stream=False
        )
        return completion.choices[0].message.content


    llm = get_llama_response  # use this in place of llm.invoke()

elif "Gemini" in selected_model:
    import google.generativeai as genai

    genai.configure(api_key=st.secrets["GEMINI_API_KEY"])  # Store in `.streamlit/secrets.toml`

    gemini_model = genai.GenerativeModel("gemini-2.5-pro-exp-03-25")


    def get_gemini_response(prompt):
        response = gemini_model.generate_content(prompt)
        return response.text


    llm = get_gemini_response

elif "All" in selected_model:

    from groq import Groq
    import google.generativeai as genai

    genai.configure(api_key=st.secrets["GEMINI_API_KEY"])


    def get_all_model_responses(prompt):
        openai_resp = ChatOpenAI(model="gpt-4o", temperature=0.2, api_key=st.secrets["OPENAI_API_KEY"]).invoke(
            [{"role": "system", "content": prompt}]).content

        gemini = genai.GenerativeModel("gemini-2.5-pro-exp-03-25")
        gemini_resp = gemini.generate_content(prompt).text

        llama = Groq(api_key=st.secrets["GROQ_API_KEY"])
        llama_resp = llama.chat.completions.create(
            model="meta-llama/llama-4-maverick-17b-128e-instruct",
            messages=[{"role": "user", "content": prompt}],
            temperature=1, max_completion_tokens=1024, top_p=1, stream=False
        ).choices[0].message.content

        return [openai_resp, gemini_resp, llama_resp]


    def rank_and_fuse(prompt, responses):
        ranked = [(resp, pair_ranker(f"{prompt}\n\n{resp}")[0][1]['score']) for resp in responses]
        ranked.sort(key=lambda x: x[1], reverse=True)
        fusion_input = "\n\n".join([f"[Answer {i + 1}]: {ans}" for i, (ans, _) in enumerate(ranked)])
        return gen_fuser(f"Fuse these responses:\n{fusion_input}", return_full_text=False)[0]['generated_text']


else:
    st.error("Unsupported model selected.")
    st.stop()

# retriever = vector_store.as_retriever()

AI_PROMPT_TEMPLATE = """
You are DermBOT, a compassionate and knowledgeable AI Dermatology Assistant designed to educate users about skin-related health concerns with clarity, empathy, and precision.

Your goal is to respond like a well-informed human expertโ€”balancing professionalism with warmth and reassurance.

When crafting responses:
- Begin with a clear, engaging summary of the condition or concern.
- Use short paragraphs for readability.
- Include bullet points or numbered lists where appropriate.
- Avoid overly technical terms unless explained simply.
- End with a helpful next step, such as lifestyle advice or when to see a doctor.

๐Ÿฉบ Response Structure:
1. **Overview** โ€” Briefly introduce the condition or concern.
2. **Common Symptoms** โ€” Describe noticeable signs in simple terms.
3. **Causes & Risk Factors** โ€” Include genetic, lifestyle, and environmental aspects.
4. **Treatment Options** โ€” Outline common OTC and prescription treatments.
5. **When to Seek Help** โ€” Warn about symptoms that require urgent care.

Always encourage consulting a licensed dermatologist for personal diagnosis and treatment. For any breathing difficulties, serious infections, or rapid symptom worsening, advise calling emergency services immediately.

---

Query: {question}
Relevant Context: {context}

Your Response:
"""

prompt_template = PromptTemplate(template=AI_PROMPT_TEMPLATE, input_variables=["question", "context"])

# rag_chain = RetrievalQA.from_chain_type(
#   llm=llm,
#  retriever=retriever,
#  chain_type="stuff",
#  chain_type_kwargs={"prompt": prompt_template, "document_variable_name": "context"}
# )

# === Class Names ===
multilabel_class_names = [
    "Vesicle", "Papule", "Macule", "Plaque", "Abscess", "Pustule", "Bulla", "Patch",
    "Nodule", "Ulcer", "Crust", "Erosion", "Excoriation", "Atrophy", "Exudate", "Purpura/Petechiae",
    "Fissure", "Induration", "Xerosis", "Telangiectasia", "Scale", "Scar", "Friable", "Sclerosis",
    "Pedunculated", "Exophytic/Fungating", "Warty/Papillomatous", "Dome-shaped", "Flat topped",
    "Brown(Hyperpigmentation)", "Translucent", "White(Hypopigmentation)", "Purple", "Yellow",
    "Black", "Erythema", "Comedo", "Lichenification", "Blue", "Umbilicated", "Poikiloderma",
    "Salmon", "Wheal", "Acuminate", "Burrow", "Gray", "Pigmented", "Cyst"
]

multiclass_class_names = [
    "systemic", "hair", "drug_reactions", "uriticaria", "acne", "light",
    "autoimmune", "papulosquamous", "eczema", "skincancer",
    "benign_tumors", "bacteria_parasetic_infections", "fungal_infections", "viral_skin_infections"
]


# === Load Models ===
class SkinViT(nn.Module):
    def __init__(self, num_classes):
        super(SkinViT, self).__init__()
        self.model = vit_b_16(weights=ViT_B_16_Weights.DEFAULT)
        in_features = self.model.heads.head.in_features
        self.model.heads.head = nn.Linear(in_features, num_classes)

    def forward(self, x):
        return self.model(x)


class DermNetViT(nn.Module):
    def __init__(self, num_classes):
        super(DermNetViT, self).__init__()
        self.model = vit_l_16(weights=ViT_L_16_Weights.DEFAULT)
        in_features = self.model.heads[0].in_features
        self.model.heads[0] = nn.Sequential(
            nn.Dropout(0.3),
            nn.Linear(in_features, num_classes)
        )

    def forward(self, x):
        return self.model(x)


# multilabel_model = torch.load("D:/DR/RAG/BestModels2703/skin_vit_fold10.pth", map_location='cpu')
# multiclass_model = torch.load("D:/DR/RAG/BestModels2703/best_dermnet_vit.pth", map_location='cpu')

# === Load Model State Dicts ===
multilabel_model_path = hf_hub_download(repo_id="santhoshraghu/DermBOT", filename="skin_vit_fold10_sd.pth")
multiclass_model_path = hf_hub_download(repo_id="santhoshraghu/DermBOT", filename="best_dermnet_vit_sd.pth")


def load_model_with_fallback(model_class, weight_path, num_classes, model_name):
    try:
        print(f"๐Ÿ” Loading {model_name} on GPU...")
        model = model_class(num_classes)
        model.load_state_dict(torch.load(weight_path, map_location="cuda"))
        model.to("cuda")
        print(f"โœ… {model_name} loaded on GPU.")
        return model
    except RuntimeError as e:
        if "CUDA out of memory" in str(e):
            print(f"โš ๏ธ {model_name} OOM. Falling back to CPU.")
        else:
            print(f"โŒ Error loading {model_name} on CUDA: {e}")
        print(f"๐Ÿ”„ Loading {model_name} on CPU...")
        model = model_class(num_classes)
        model.load_state_dict(torch.load(weight_path, map_location="cpu"))
        model.to("cpu")
        return model


# Load both models with fallback
multilabel_model = load_model_with_fallback(SkinViT, multilabel_model_path, len(multilabel_class_names), "SkinViT")
multiclass_model = load_model_with_fallback(DermNetViT, multiclass_model_path, len(multiclass_class_names),
                                            "DermNetViT")

multilabel_model.eval()
multiclass_model.eval()

# === Session Init ===
if "messages" not in st.session_state:
    st.session_state.messages = []


# === Image Processing Function ===
def run_inference(image):
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5])
    ])
    input_tensor = transform(image).unsqueeze(0)

    # Automatically match model device (GPU or CPU)
    model_device = next(multilabel_model.parameters()).device
    input_tensor = input_tensor.to(model_device)

    with torch.no_grad():
        probs_multi = torch.sigmoid(multilabel_model(input_tensor)).squeeze().cpu().numpy()
        pred_idx = torch.argmax(multiclass_model(input_tensor), dim=1).item()
        predicted_multi = [multilabel_class_names[i] for i, p in enumerate(probs_multi) if p > 0.5]
        predicted_single = multiclass_class_names[pred_idx]

    return predicted_multi, predicted_single


# === PDF Export ===
def export_chat_to_pdf(messages):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", size=12)
    for msg in messages:
        role = "You" if msg["role"] == "user" else "AI"
        pdf.multi_cell(0, 10, f"{role}: {msg['content']}\n")
    buf = io.BytesIO()
    pdf.output(buf)
    buf.seek(0)
    return buf


# Reranker utility
def rerank_with_cohere(query, documents, top_n=5):
    if not documents:
        return []
    raw_texts = [doc.page_content for doc in documents]
    results = co.rerank(query=query, documents=raw_texts, top_n=min(top_n, len(raw_texts)), model="rerank-v3.5")
    return [documents[result.index] for result in results]


# Final answer generation using reranked context
def get_reranked_response(query):
    docs = retriever.get_relevant_documents(query)
    reranked_docs = rerank_with_cohere(query, docs)
    context = "\n\n".join([doc.page_content for doc in reranked_docs])
    prompt = AI_PROMPT_TEMPLATE.format(question=query, context=context)

    if selected_model == "All":
        responses = get_all_model_responses(prompt)
        fused = rank_and_fuse(prompt, responses)
        return type("Obj", (), {"content": fused})

    if callable(llm):
        return type("Obj", (), {"content": llm(prompt)})
    else:
        return llm.invoke([{"role": "system", "content": prompt}])


# === App UI ===

st.title("๐Ÿงฌ DermBOT โ€” Skin AI Assistant")
st.caption(f"๐Ÿง  Using model: {selected_model}")
uploaded_file = st.file_uploader("Upload a skin image", type=["jpg", "jpeg", "png"])

if uploaded_file:
    st.image(uploaded_file, caption="Uploaded image", use_container_width=True)
    image = Image.open(uploaded_file).convert("RGB")

    predicted_multi, predicted_single = run_inference(image)

    # Show predictions clearly to the user
    st.markdown(f"๐Ÿงพ **Skin Issues**: {', '.join(predicted_multi)}")
    st.markdown(f"๐Ÿ“Œ **Most Likely Diagnosis**: {predicted_single}")

    query = f"What are my treatment options for {predicted_multi} and {predicted_single}?"
    st.session_state.messages.append({"role": "user", "content": query})

    with st.spinner("๐Ÿ”Ž Analyzing and retrieving context..."):
        response = get_reranked_response(query)
        st.session_state.messages.append({"role": "assistant", "content": response.content})

    with st.chat_message("assistant"):
        st.markdown(response.content)

# === Chat Interface ===
if prompt := st.chat_input("Ask a follow-up..."):
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)

    response = get_reranked_response(prompt)
    st.session_state.messages.append({"role": "assistant", "content": response.content})
    with st.chat_message("assistant"):
        st.markdown(response.content)

# === PDF Button ===
if st.button("๐Ÿ“„ Download Chat as PDF"):
    pdf_file = export_chat_to_pdf(st.session_state.messages)
    st.download_button("Download PDF", data=pdf_file, file_name="chat_history.pdf", mime="application/pdf")