|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from datasets import load_dataset, load_metric |
|
import torch |
|
import numpy as np |
|
import os |
|
|
|
raw_datasets = load_dataset("json", data_files="./more models/bank_en_zh_4.json") |
|
split_datasets = raw_datasets["train"].train_test_split(train_size=0.9, seed=20) |
|
split_datasets["validation"] = split_datasets.pop("test") |
|
|
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq |
|
|
|
model_checkpoint = "Helsinki-NLP/opus-mt-en-zh" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="tf") |
|
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint) |
|
|
|
model.cuda() |
|
|
|
|
|
|
|
|
|
|
|
max_input_length = 23 |
|
max_target_length = 23 |
|
|
|
|
|
def preprocess_function(examples): |
|
inputs = [ex["en"] for ex in examples["translation"]] |
|
targets = [ex["zh"] for ex in examples["translation"]] |
|
model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True) |
|
|
|
|
|
with tokenizer.as_target_tokenizer(): |
|
labels = tokenizer(targets, max_length=max_target_length, truncation=True) |
|
|
|
model_inputs["labels"] = labels["input_ids"] |
|
return model_inputs |
|
|
|
tokenized_datasets = split_datasets.map( |
|
preprocess_function, |
|
batched=True, |
|
remove_columns=split_datasets["train"].column_names, |
|
) |
|
|
|
|
|
|
|
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model) |
|
|
|
batch = data_collator([tokenized_datasets["train"][i] for i in range(1, 3)]) |
|
|
|
def compute_metrics(eval_preds): |
|
preds, labels = eval_preds |
|
|
|
if isinstance(preds, tuple): |
|
preds = preds[0] |
|
|
|
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) |
|
|
|
|
|
labels = np.where(labels != -100, labels, tokenizer.pad_token_id) |
|
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) |
|
|
|
|
|
decoded_preds = [pred.strip() for pred in decoded_preds] |
|
decoded_labels = [[label.strip()] for label in decoded_labels] |
|
|
|
|
|
|
|
|
|
return metric.compute(predictions=decoded_preds, references=decoded_labels) |
|
|
|
|
|
from transformers import Seq2SeqTrainingArguments |
|
|
|
args = Seq2SeqTrainingArguments( |
|
f"marian-finetuned-kde4-en-to-zh", |
|
evaluation_strategy="no", |
|
save_strategy="epoch", |
|
learning_rate=2e-5, |
|
per_device_train_batch_size=128, |
|
per_device_eval_batch_size=64, |
|
weight_decay=0.01, |
|
save_total_limit=3, |
|
num_train_epochs=60, |
|
predict_with_generate=True, |
|
fp16=True, |
|
push_to_hub=False, |
|
) |
|
|
|
|
|
from transformers import Seq2SeqTrainer |
|
|
|
trainer = Seq2SeqTrainer( |
|
model, |
|
args, |
|
train_dataset=tokenized_datasets["train"], |
|
eval_dataset=tokenized_datasets["validation"], |
|
data_collator=data_collator, |
|
tokenizer=tokenizer, |
|
compute_metrics=compute_metrics, |
|
) |
|
|
|
|
|
trainer.train() |
|
trainer.save_model("./more models/test-ml-trained_4") |
|
|