File size: 3,667 Bytes
14e6deb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
#Helsinki-NLP/opus-mt-zh-en

# 测试中英翻译模型
# from transformers import pipeline
# translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-zh", max_time=7)
# prediction = translator("FRST", )[0]["translation_text"]
# print(prediction)


# 微调
from datasets import load_dataset, load_metric
import torch
import numpy as np
import os

raw_datasets = load_dataset("json", data_files="./more models/bank_en_zh_4.json")
split_datasets = raw_datasets["train"].train_test_split(train_size=0.9, seed=20)
split_datasets["validation"] = split_datasets.pop("test")

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq

model_checkpoint = "Helsinki-NLP/opus-mt-en-zh"
# tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="tf",device=device)
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, return_tensors="tf")
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
# model = torch.nn.DataParallel(model)
model.cuda()

# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# model.to(device)

max_input_length = 23
max_target_length = 23


def preprocess_function(examples):
    inputs = [ex["en"] for ex in examples["translation"]]
    targets = [ex["zh"] for ex in examples["translation"]]
    model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)

    # Set up the tokenizer for targets
    with tokenizer.as_target_tokenizer():
        labels = tokenizer(targets, max_length=max_target_length, truncation=True)

    model_inputs["labels"] = labels["input_ids"]
    return model_inputs

tokenized_datasets = split_datasets.map(
    preprocess_function,
    batched=True,
    remove_columns=split_datasets["train"].column_names,
)



data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)

batch = data_collator([tokenized_datasets["train"][i] for i in range(1, 3)])

def compute_metrics(eval_preds):
    preds, labels = eval_preds
    # In case the model returns more than the prediction logits
    if isinstance(preds, tuple):
        preds = preds[0]

    decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)

    # Replace -100s in the labels as we can't decode them
    labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
    decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

    # Some simple post-processing
    decoded_preds = [pred.strip() for pred in decoded_preds]
    decoded_labels = [[label.strip()] for label in decoded_labels]
    # print("Return:- ", metric.compute(predictions=decoded_preds, references=decoded_labels))
    # print("decoded_preds:- ", decoded_preds)
    # print("decoded_labels:- ", decoded_labels)
    # print("Done")
    return metric.compute(predictions=decoded_preds, references=decoded_labels)


from transformers import Seq2SeqTrainingArguments

args = Seq2SeqTrainingArguments(
    f"marian-finetuned-kde4-en-to-zh",
    evaluation_strategy="no",
    save_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=128,#32
    per_device_eval_batch_size=64,#64
    weight_decay=0.01,
    save_total_limit=3,
    num_train_epochs=60,
    predict_with_generate=True,
    fp16=True,
    push_to_hub=False,
)


from transformers import Seq2SeqTrainer

trainer = Seq2SeqTrainer(
    model,
    args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["validation"],
    data_collator=data_collator,
    tokenizer=tokenizer,
    compute_metrics=compute_metrics,
)


trainer.train()
trainer.save_model("./more models/test-ml-trained_4")