Spaces:
Runtime error
Runtime error
# from https://github.com/amdegroot/ssd.pytorch | |
import torch | |
from torchvision import transforms | |
import cv2 | |
import numpy as np | |
import types | |
from numpy import random | |
def intersect(box_a, box_b): | |
max_xy = np.minimum(box_a[:, 2:], box_b[2:]) | |
min_xy = np.maximum(box_a[:, :2], box_b[:2]) | |
inter = np.clip((max_xy - min_xy), a_min=0, a_max=np.inf) | |
return inter[:, 0] * inter[:, 1] | |
def jaccard_numpy(box_a, box_b): | |
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap | |
is simply the intersection over union of two boxes. | |
E.g.: | |
A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B) | |
Args: | |
box_a: Multiple bounding boxes, Shape: [num_boxes,4] | |
box_b: Single bounding box, Shape: [4] | |
Return: | |
jaccard overlap: Shape: [box_a.shape[0], box_a.shape[1]] | |
""" | |
inter = intersect(box_a, box_b) | |
area_a = ((box_a[:, 2]-box_a[:, 0]) * | |
(box_a[:, 3]-box_a[:, 1])) # [A,B] | |
area_b = ((box_b[2]-box_b[0]) * | |
(box_b[3]-box_b[1])) # [A,B] | |
union = area_a + area_b - inter | |
return inter / union # [A,B] | |
class Compose(object): | |
"""Composes several augmentations together. | |
Args: | |
transforms (List[Transform]): list of transforms to compose. | |
Example: | |
>>> augmentations.Compose([ | |
>>> transforms.CenterCrop(10), | |
>>> transforms.ToTensor(), | |
>>> ]) | |
""" | |
def __init__(self, transforms): | |
self.transforms = transforms | |
def __call__(self, img, boxes=None, labels=None): | |
for t in self.transforms: | |
img, boxes, labels = t(img, boxes, labels) | |
return img, boxes, labels | |
class Lambda(object): | |
"""Applies a lambda as a transform.""" | |
def __init__(self, lambd): | |
assert isinstance(lambd, types.LambdaType) | |
self.lambd = lambd | |
def __call__(self, img, boxes=None, labels=None): | |
return self.lambd(img, boxes, labels) | |
class ConvertFromInts(object): | |
def __call__(self, image, boxes=None, labels=None): | |
return image.astype(np.float32), boxes, labels | |
class SubtractMeans(object): | |
def __init__(self, mean): | |
self.mean = np.array(mean, dtype=np.float32) | |
def __call__(self, image, boxes=None, labels=None): | |
image = image.astype(np.float32) | |
image -= self.mean | |
return image.astype(np.float32), boxes, labels | |
class ToAbsoluteCoords(object): | |
def __call__(self, image, boxes=None, labels=None): | |
height, width, channels = image.shape | |
boxes[:, 0] *= width | |
boxes[:, 2] *= width | |
boxes[:, 1] *= height | |
boxes[:, 3] *= height | |
return image, boxes, labels | |
class ToPercentCoords(object): | |
def __call__(self, image, boxes=None, labels=None): | |
height, width, channels = image.shape | |
boxes[:, 0] /= width | |
boxes[:, 2] /= width | |
boxes[:, 1] /= height | |
boxes[:, 3] /= height | |
return image, boxes, labels | |
class Resize(object): | |
def __init__(self, size=300): | |
self.size = size | |
def __call__(self, image, boxes=None, labels=None): | |
image = cv2.resize(image, (self.size, | |
self.size)) | |
return image, boxes, labels | |
class RandomSaturation(object): | |
def __init__(self, lower=0.5, upper=1.5): | |
self.lower = lower | |
self.upper = upper | |
assert self.upper >= self.lower, "contrast upper must be >= lower." | |
assert self.lower >= 0, "contrast lower must be non-negative." | |
def __call__(self, image, boxes=None, labels=None): | |
if random.randint(2): | |
image[:, :, 1] *= random.uniform(self.lower, self.upper) | |
return image, boxes, labels | |
class RandomHue(object): | |
def __init__(self, delta=18.0): | |
assert delta >= 0.0 and delta <= 360.0 | |
self.delta = delta | |
def __call__(self, image, boxes=None, labels=None): | |
if random.randint(2): | |
image[:, :, 0] += random.uniform(-self.delta, self.delta) | |
image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0 | |
image[:, :, 0][image[:, :, 0] < 0.0] += 360.0 | |
return image, boxes, labels | |
class RandomLightingNoise(object): | |
def __init__(self): | |
self.perms = ((0, 1, 2), (0, 2, 1), | |
(1, 0, 2), (1, 2, 0), | |
(2, 0, 1), (2, 1, 0)) | |
def __call__(self, image, boxes=None, labels=None): | |
if random.randint(2): | |
swap = self.perms[random.randint(len(self.perms))] | |
shuffle = SwapChannels(swap) # shuffle channels | |
image = shuffle(image) | |
return image, boxes, labels | |
class ConvertColor(object): | |
def __init__(self, current, transform): | |
self.transform = transform | |
self.current = current | |
def __call__(self, image, boxes=None, labels=None): | |
if self.current == 'BGR' and self.transform == 'HSV': | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) | |
elif self.current == 'RGB' and self.transform == 'HSV': | |
image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV) | |
elif self.current == 'BGR' and self.transform == 'RGB': | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
elif self.current == 'HSV' and self.transform == 'BGR': | |
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR) | |
elif self.current == 'HSV' and self.transform == "RGB": | |
image = cv2.cvtColor(image, cv2.COLOR_HSV2RGB) | |
else: | |
raise NotImplementedError | |
return image, boxes, labels | |
class RandomContrast(object): | |
def __init__(self, lower=0.5, upper=1.5): | |
self.lower = lower | |
self.upper = upper | |
assert self.upper >= self.lower, "contrast upper must be >= lower." | |
assert self.lower >= 0, "contrast lower must be non-negative." | |
# expects float image | |
def __call__(self, image, boxes=None, labels=None): | |
if random.randint(2): | |
alpha = random.uniform(self.lower, self.upper) | |
image *= alpha | |
return image, boxes, labels | |
class RandomBrightness(object): | |
def __init__(self, delta=32): | |
assert delta >= 0.0 | |
assert delta <= 255.0 | |
self.delta = delta | |
def __call__(self, image, boxes=None, labels=None): | |
if random.randint(2): | |
delta = random.uniform(-self.delta, self.delta) | |
image += delta | |
return image, boxes, labels | |
class ToCV2Image(object): | |
def __call__(self, tensor, boxes=None, labels=None): | |
return tensor.cpu().numpy().astype(np.float32).transpose((1, 2, 0)), boxes, labels | |
class ToTensor(object): | |
def __call__(self, cvimage, boxes=None, labels=None): | |
return torch.from_numpy(cvimage.astype(np.float32)).permute(2, 0, 1), boxes, labels | |
class RandomSampleCrop(object): | |
"""Crop | |
Arguments: | |
img (Image): the image being input during training | |
boxes (Tensor): the original bounding boxes in pt form | |
labels (Tensor): the class labels for each bbox | |
mode (float tuple): the min and max jaccard overlaps | |
Return: | |
(img, boxes, classes) | |
img (Image): the cropped image | |
boxes (Tensor): the adjusted bounding boxes in pt form | |
labels (Tensor): the class labels for each bbox | |
""" | |
def __init__(self): | |
self.sample_options = ( | |
# using entire original input image | |
None, | |
# sample a patch s.t. MIN jaccard w/ obj in .1,.3,.4,.7,.9 | |
(0.1, None), | |
(0.3, None), | |
(0.7, None), | |
(0.9, None), | |
# randomly sample a patch | |
(None, None), | |
) | |
def __call__(self, image, boxes=None, labels=None): | |
height, width, _ = image.shape | |
while True: | |
# randomly choose a mode | |
#mode = random.choice(self.sample_options) # throws numpy deprecation warning | |
mode = self.sample_options[random.randint(len(self.sample_options))] | |
if mode is None: | |
return image, boxes, labels | |
min_iou, max_iou = mode | |
if min_iou is None: | |
min_iou = float('-inf') | |
if max_iou is None: | |
max_iou = float('inf') | |
# max trails (50) | |
for _ in range(50): | |
current_image = image | |
w = random.uniform(0.3 * width, width) | |
h = random.uniform(0.3 * height, height) | |
# aspect ratio constraint b/t .5 & 2 | |
if h / w < 0.5 or h / w > 2: | |
continue | |
left = random.uniform(width - w) | |
top = random.uniform(height - h) | |
# convert to integer rect x1,y1,x2,y2 | |
rect = np.array([int(left), int(top), int(left+w), int(top+h)]) | |
# calculate IoU (jaccard overlap) b/t the cropped and gt boxes | |
overlap = jaccard_numpy(boxes, rect) | |
# is min and max overlap constraint satisfied? if not try again | |
if overlap.min() < min_iou and max_iou < overlap.max(): | |
continue | |
# cut the crop from the image | |
current_image = current_image[rect[1]:rect[3], rect[0]:rect[2], | |
:] | |
# keep overlap with gt box IF center in sampled patch | |
centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0 | |
# mask in all gt boxes that above and to the left of centers | |
m1 = (rect[0] < centers[:, 0]) * (rect[1] < centers[:, 1]) | |
# mask in all gt boxes that under and to the right of centers | |
m2 = (rect[2] > centers[:, 0]) * (rect[3] > centers[:, 1]) | |
# mask in that both m1 and m2 are true | |
mask = m1 * m2 | |
# have any valid boxes? try again if not | |
if not mask.any(): | |
continue | |
# take only matching gt boxes | |
current_boxes = boxes[mask, :].copy() | |
# take only matching gt labels | |
current_labels = labels[mask] | |
# should we use the box left and top corner or the crop's | |
current_boxes[:, :2] = np.maximum(current_boxes[:, :2], | |
rect[:2]) | |
# adjust to crop (by substracting crop's left,top) | |
current_boxes[:, :2] -= rect[:2] | |
current_boxes[:, 2:] = np.minimum(current_boxes[:, 2:], | |
rect[2:]) | |
# adjust to crop (by substracting crop's left,top) | |
current_boxes[:, 2:] -= rect[:2] | |
return current_image, current_boxes, current_labels | |
class Expand(object): | |
def __init__(self, mean): | |
self.mean = mean | |
def __call__(self, image, boxes, labels): | |
if random.randint(2): | |
return image, boxes, labels | |
height, width, depth = image.shape | |
ratio = random.uniform(1, 4) | |
left = random.uniform(0, width*ratio - width) | |
top = random.uniform(0, height*ratio - height) | |
expand_image = np.zeros( | |
(int(height*ratio), int(width*ratio), depth), | |
dtype=image.dtype) | |
expand_image[:, :, :] = self.mean | |
expand_image[int(top):int(top + height), | |
int(left):int(left + width)] = image | |
image = expand_image | |
boxes = boxes.copy() | |
boxes[:, :2] += (int(left), int(top)) | |
boxes[:, 2:] += (int(left), int(top)) | |
return image, boxes, labels | |
class RandomMirror(object): | |
def __call__(self, image, boxes, classes): | |
_, width, _ = image.shape | |
if random.randint(2): | |
image = image[:, ::-1] | |
boxes = boxes.copy() | |
boxes[:, 0::2] = width - boxes[:, 2::-2] | |
return image, boxes, classes | |
class SwapChannels(object): | |
"""Transforms a tensorized image by swapping the channels in the order | |
specified in the swap tuple. | |
Args: | |
swaps (int triple): final order of channels | |
eg: (2, 1, 0) | |
""" | |
def __init__(self, swaps): | |
self.swaps = swaps | |
def __call__(self, image): | |
""" | |
Args: | |
image (Tensor): image tensor to be transformed | |
Return: | |
a tensor with channels swapped according to swap | |
""" | |
# if torch.is_tensor(image): | |
# image = image.data.cpu().numpy() | |
# else: | |
# image = np.array(image) | |
image = image[:, :, self.swaps] | |
return image | |
class PhotometricDistort(object): | |
def __init__(self): | |
self.pd = [ | |
RandomContrast(), # RGB | |
ConvertColor(current="RGB", transform='HSV'), # HSV | |
RandomSaturation(), # HSV | |
RandomHue(), # HSV | |
ConvertColor(current='HSV', transform='RGB'), # RGB | |
RandomContrast() # RGB | |
] | |
self.rand_brightness = RandomBrightness() | |
self.rand_light_noise = RandomLightingNoise() | |
def __call__(self, image, boxes, labels): | |
im = image.copy() | |
im, boxes, labels = self.rand_brightness(im, boxes, labels) | |
if random.randint(2): | |
distort = Compose(self.pd[:-1]) | |
else: | |
distort = Compose(self.pd[1:]) | |
im, boxes, labels = distort(im, boxes, labels) | |
return self.rand_light_noise(im, boxes, labels) | |