File size: 13,494 Bytes
5eff22e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
# from https://github.com/amdegroot/ssd.pytorch


import torch
from torchvision import transforms
import cv2
import numpy as np
import types
from numpy import random


def intersect(box_a, box_b):
    max_xy = np.minimum(box_a[:, 2:], box_b[2:])
    min_xy = np.maximum(box_a[:, :2], box_b[:2])
    inter = np.clip((max_xy - min_xy), a_min=0, a_max=np.inf)
    return inter[:, 0] * inter[:, 1]


def jaccard_numpy(box_a, box_b):
    """Compute the jaccard overlap of two sets of boxes.  The jaccard overlap
    is simply the intersection over union of two boxes.
    E.g.:
        A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
    Args:
        box_a: Multiple bounding boxes, Shape: [num_boxes,4]
        box_b: Single bounding box, Shape: [4]
    Return:
        jaccard overlap: Shape: [box_a.shape[0], box_a.shape[1]]
    """
    inter = intersect(box_a, box_b)
    area_a = ((box_a[:, 2]-box_a[:, 0]) *
              (box_a[:, 3]-box_a[:, 1]))  # [A,B]
    area_b = ((box_b[2]-box_b[0]) *
              (box_b[3]-box_b[1]))  # [A,B]
    union = area_a + area_b - inter
    return inter / union  # [A,B]


class Compose(object):
    """Composes several augmentations together.
    Args:
        transforms (List[Transform]): list of transforms to compose.
    Example:
        >>> augmentations.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img, boxes=None, labels=None):
        for t in self.transforms:
            img, boxes, labels = t(img, boxes, labels)
        return img, boxes, labels


class Lambda(object):
    """Applies a lambda as a transform."""

    def __init__(self, lambd):
        assert isinstance(lambd, types.LambdaType)
        self.lambd = lambd

    def __call__(self, img, boxes=None, labels=None):
        return self.lambd(img, boxes, labels)


class ConvertFromInts(object):
    def __call__(self, image, boxes=None, labels=None):
        return image.astype(np.float32), boxes, labels


class SubtractMeans(object):
    def __init__(self, mean):
        self.mean = np.array(mean, dtype=np.float32)

    def __call__(self, image, boxes=None, labels=None):
        image = image.astype(np.float32)
        image -= self.mean
        return image.astype(np.float32), boxes, labels


class ToAbsoluteCoords(object):
    def __call__(self, image, boxes=None, labels=None):
        height, width, channels = image.shape
        boxes[:, 0] *= width
        boxes[:, 2] *= width
        boxes[:, 1] *= height
        boxes[:, 3] *= height

        return image, boxes, labels


class ToPercentCoords(object):
    def __call__(self, image, boxes=None, labels=None):
        height, width, channels = image.shape
        boxes[:, 0] /= width
        boxes[:, 2] /= width
        boxes[:, 1] /= height
        boxes[:, 3] /= height

        return image, boxes, labels


class Resize(object):
    def __init__(self, size=300):
        self.size = size

    def __call__(self, image, boxes=None, labels=None):
        image = cv2.resize(image, (self.size,
                                 self.size))
        return image, boxes, labels


class RandomSaturation(object):
    def __init__(self, lower=0.5, upper=1.5):
        self.lower = lower
        self.upper = upper
        assert self.upper >= self.lower, "contrast upper must be >= lower."
        assert self.lower >= 0, "contrast lower must be non-negative."

    def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            image[:, :, 1] *= random.uniform(self.lower, self.upper)

        return image, boxes, labels


class RandomHue(object):
    def __init__(self, delta=18.0):
        assert delta >= 0.0 and delta <= 360.0
        self.delta = delta

    def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            image[:, :, 0] += random.uniform(-self.delta, self.delta)
            image[:, :, 0][image[:, :, 0] > 360.0] -= 360.0
            image[:, :, 0][image[:, :, 0] < 0.0] += 360.0
        return image, boxes, labels


class RandomLightingNoise(object):
    def __init__(self):
        self.perms = ((0, 1, 2), (0, 2, 1),
                      (1, 0, 2), (1, 2, 0),
                      (2, 0, 1), (2, 1, 0))

    def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            swap = self.perms[random.randint(len(self.perms))]
            shuffle = SwapChannels(swap)  # shuffle channels
            image = shuffle(image)
        return image, boxes, labels


class ConvertColor(object):
    def __init__(self, current, transform):
        self.transform = transform
        self.current = current

    def __call__(self, image, boxes=None, labels=None):
        if self.current == 'BGR' and self.transform == 'HSV':
            image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
        elif self.current == 'RGB' and self.transform == 'HSV':
            image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
        elif self.current == 'BGR' and self.transform == 'RGB':
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        elif self.current == 'HSV' and self.transform == 'BGR':
            image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
        elif self.current == 'HSV' and self.transform == "RGB":
            image = cv2.cvtColor(image, cv2.COLOR_HSV2RGB)
        else:
            raise NotImplementedError
        return image, boxes, labels


class RandomContrast(object):
    def __init__(self, lower=0.5, upper=1.5):
        self.lower = lower
        self.upper = upper
        assert self.upper >= self.lower, "contrast upper must be >= lower."
        assert self.lower >= 0, "contrast lower must be non-negative."

    # expects float image
    def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            alpha = random.uniform(self.lower, self.upper)
            image *= alpha
        return image, boxes, labels


class RandomBrightness(object):
    def __init__(self, delta=32):
        assert delta >= 0.0
        assert delta <= 255.0
        self.delta = delta

    def __call__(self, image, boxes=None, labels=None):
        if random.randint(2):
            delta = random.uniform(-self.delta, self.delta)
            image += delta
        return image, boxes, labels


class ToCV2Image(object):
    def __call__(self, tensor, boxes=None, labels=None):
        return tensor.cpu().numpy().astype(np.float32).transpose((1, 2, 0)), boxes, labels


class ToTensor(object):
    def __call__(self, cvimage, boxes=None, labels=None):
        return torch.from_numpy(cvimage.astype(np.float32)).permute(2, 0, 1), boxes, labels


class RandomSampleCrop(object):
    """Crop
    Arguments:
        img (Image): the image being input during training
        boxes (Tensor): the original bounding boxes in pt form
        labels (Tensor): the class labels for each bbox
        mode (float tuple): the min and max jaccard overlaps
    Return:
        (img, boxes, classes)
            img (Image): the cropped image
            boxes (Tensor): the adjusted bounding boxes in pt form
            labels (Tensor): the class labels for each bbox
    """
    def __init__(self):
        self.sample_options = (
            # using entire original input image
            None,
            # sample a patch s.t. MIN jaccard w/ obj in .1,.3,.4,.7,.9
            (0.1, None),
            (0.3, None),
            (0.7, None),
            (0.9, None),
            # randomly sample a patch
            (None, None),
        )

    def __call__(self, image, boxes=None, labels=None):
        height, width, _ = image.shape
        while True:
            # randomly choose a mode
            #mode = random.choice(self.sample_options)  # throws numpy deprecation warning
            mode = self.sample_options[random.randint(len(self.sample_options))]
            
            if mode is None:
                return image, boxes, labels

            min_iou, max_iou = mode
            if min_iou is None:
                min_iou = float('-inf')
            if max_iou is None:
                max_iou = float('inf')

            # max trails (50)
            for _ in range(50):
                current_image = image

                w = random.uniform(0.3 * width, width)
                h = random.uniform(0.3 * height, height)

                # aspect ratio constraint b/t .5 & 2
                if h / w < 0.5 or h / w > 2:
                    continue

                left = random.uniform(width - w)
                top = random.uniform(height - h)

                # convert to integer rect x1,y1,x2,y2
                rect = np.array([int(left), int(top), int(left+w), int(top+h)])

                # calculate IoU (jaccard overlap) b/t the cropped and gt boxes
                overlap = jaccard_numpy(boxes, rect)

                # is min and max overlap constraint satisfied? if not try again
                if overlap.min() < min_iou and max_iou < overlap.max():
                    continue

                # cut the crop from the image
                current_image = current_image[rect[1]:rect[3], rect[0]:rect[2],
                                              :]

                # keep overlap with gt box IF center in sampled patch
                centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0

                # mask in all gt boxes that above and to the left of centers
                m1 = (rect[0] < centers[:, 0]) * (rect[1] < centers[:, 1])

                # mask in all gt boxes that under and to the right of centers
                m2 = (rect[2] > centers[:, 0]) * (rect[3] > centers[:, 1])

                # mask in that both m1 and m2 are true
                mask = m1 * m2

                # have any valid boxes? try again if not
                if not mask.any():
                    continue

                # take only matching gt boxes
                current_boxes = boxes[mask, :].copy()

                # take only matching gt labels
                current_labels = labels[mask]

                # should we use the box left and top corner or the crop's
                current_boxes[:, :2] = np.maximum(current_boxes[:, :2],
                                                  rect[:2])
                # adjust to crop (by substracting crop's left,top)
                current_boxes[:, :2] -= rect[:2]

                current_boxes[:, 2:] = np.minimum(current_boxes[:, 2:],
                                                  rect[2:])
                # adjust to crop (by substracting crop's left,top)
                current_boxes[:, 2:] -= rect[:2]

                return current_image, current_boxes, current_labels


class Expand(object):
    def __init__(self, mean):
        self.mean = mean

    def __call__(self, image, boxes, labels):
        if random.randint(2):
            return image, boxes, labels

        height, width, depth = image.shape
        ratio = random.uniform(1, 4)
        left = random.uniform(0, width*ratio - width)
        top = random.uniform(0, height*ratio - height)

        expand_image = np.zeros(
            (int(height*ratio), int(width*ratio), depth),
            dtype=image.dtype)
        expand_image[:, :, :] = self.mean
        expand_image[int(top):int(top + height),
                     int(left):int(left + width)] = image
        image = expand_image

        boxes = boxes.copy()
        boxes[:, :2] += (int(left), int(top))
        boxes[:, 2:] += (int(left), int(top))

        return image, boxes, labels


class RandomMirror(object):
    def __call__(self, image, boxes, classes):
        _, width, _ = image.shape
        if random.randint(2):
            image = image[:, ::-1]
            boxes = boxes.copy()
            boxes[:, 0::2] = width - boxes[:, 2::-2]
        return image, boxes, classes


class SwapChannels(object):
    """Transforms a tensorized image by swapping the channels in the order
     specified in the swap tuple.
    Args:
        swaps (int triple): final order of channels
            eg: (2, 1, 0)
    """

    def __init__(self, swaps):
        self.swaps = swaps

    def __call__(self, image):
        """
        Args:
            image (Tensor): image tensor to be transformed
        Return:
            a tensor with channels swapped according to swap
        """
        # if torch.is_tensor(image):
        #     image = image.data.cpu().numpy()
        # else:
        #     image = np.array(image)
        image = image[:, :, self.swaps]
        return image


class PhotometricDistort(object):
    def __init__(self):
        self.pd = [
            RandomContrast(),  # RGB
            ConvertColor(current="RGB", transform='HSV'),  # HSV
            RandomSaturation(),  # HSV
            RandomHue(),  # HSV
            ConvertColor(current='HSV', transform='RGB'),  # RGB
            RandomContrast()  # RGB
        ]
        self.rand_brightness = RandomBrightness()
        self.rand_light_noise = RandomLightingNoise()

    def __call__(self, image, boxes, labels):
        im = image.copy()
        im, boxes, labels = self.rand_brightness(im, boxes, labels)
        if random.randint(2):
            distort = Compose(self.pd[:-1])
        else:
            distort = Compose(self.pd[1:])
        im, boxes, labels = distort(im, boxes, labels)
        return self.rand_light_noise(im, boxes, labels)