File size: 1,630 Bytes
3ae75b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import gradio as gr
from datasets import load_dataset
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np

# Load datasets
nsfw_datasets = [
    load_dataset("aifeifei798/DPO_Pairs-Roleplay-NSFW"),
    load_dataset("Maxx0/sexting-nsfw-adultconten"),
    load_dataset("QuietImpostor/Claude-3-Opus-Claude-3.5-Sonnnet-9k"),
    load_dataset("HuggingFaceTB/everyday-conversations-llama3.1-2k"),
    load_dataset("Chadgpt-fam/sexting_dataset")
]

# Prepare all texts from datasets
all_texts = []
for dataset in nsfw_datasets:
    for split in dataset.keys():
        if 'text' in dataset[split].features:
            all_texts.extend(dataset[split]['text'])
        elif 'content' in dataset[split].features:
            all_texts.extend(dataset[split]['content'])

# Create TF-IDF vectorizer
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(all_texts)

def find_best_description(input_text):
    input_vector = vectorizer.transform([input_text])
    similarities = cosine_similarity(input_vector, tfidf_matrix)
    most_similar_index = np.argmax(similarities)
    return all_texts[most_similar_index]

def generate_text(input_text):
    return find_best_description(input_text)

# Create Gradio interface
iface = gr.Interface(
    fn=generate_text,
    inputs=gr.Textbox(label="Enter text to describe"),
    outputs="text",
    title="NSFW Text Descriptor",
    description="Enter text to find the best description from NSFW datasets.",
    allow_flagging="never"
)

# Launch the app
if __name__ == "__main__":
    iface.launch()